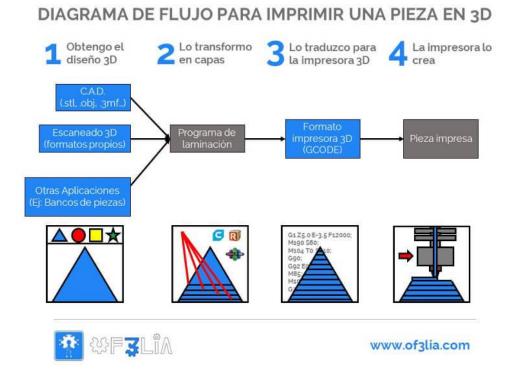


DÍA 1: INTRODUCCIÓN

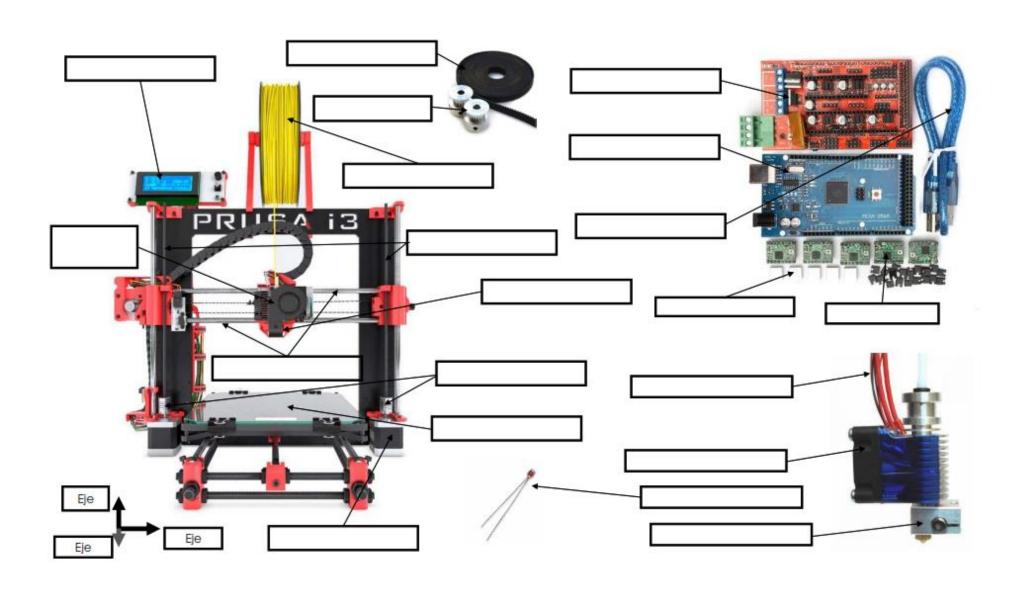

- 1. Introducción a la impresión 3D
 - > Contexto Histórico
 - > Aplicaciones en la Industria
 - > Tipos: FDM, SLA, SLS...
 - > ¿Qué es una impresora 3D?

- 2. Componentes de una impresora 3D.
 - > Al final
- 3. Introducción a los bancos de piezas: Cómo funcionan, cómo buscarlos y cómo editarlos. Vista con 3D Builder.
 - > Thingiverse
 - ➤ Paint 3D
 - > 3D Builder
 - Formatos .stl o .obj
 - Modelos 3D: https://of3lia.com/modelos-3d-para-imprimir/

4. Proceso de creación de piezas: Desde tu ordenador hasta tu mano.

5. Cálculo de costes de una impresora.

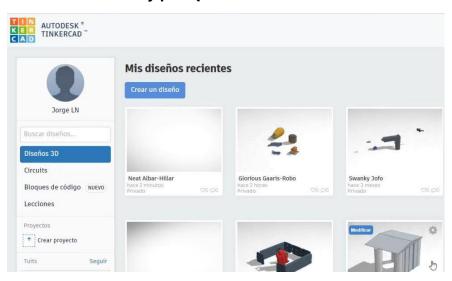
Cómo usar la calculadora			
http://bitfab.io/es/blog/cuanto-cuesta-imp	rimir-en-3d/	<u></u> Bî	icb_
Datos del modelo		Coste de fabricacion de piezas impresas	
Coste plástico [€/kg]	15	Masa de la pieza [kg]	0,1
		Tiempo impresión [h]	8
Coste luz [€/kWh]	0,15		
Consumo medio [kW]	0,50		
Coste por hora de luz [€/h]	0,075		
		Coste material	
Coste de impresora (€)	1500	- Plástico	1,50 €
Tiempo amortizacion [años]	1	- Electricidad	0,60 €
Días activa al año	250	Coste operario	
Horas por dia [h]	8	- Preparación	10,00€
Coste de amortización [€/h]	0,75	- Postproducción	10,00€
Tasa de fallos	10%	Coste amortización	6,00 €
Coste por hora del operador [€/h]	20	Coste fallos	2,81€
Tiempo preparación [h]	0,5		
Tiempo postproducción [h]	0,5	Coste pieza	30,91 €
Plástico	1.50 €		
Electricidad	0.60 €		
Coste operario	20.00€		
Coste amortización	6,00 €		

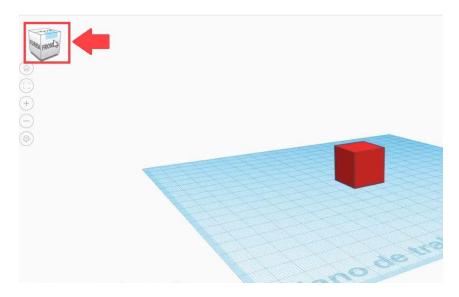

6. Tipos de filamentos e impresoras que existen y marcas donde comprarlos.

- Guía impresoras actualizada: https://of3lia.com/comprarmejor-impresora-3d-calidad-precio/
- Guía filamentos actualizado: https://of3lia.com/elegirfilamento-impresora-3d/
- Filamentos Normales: PLA, ABS, PETG, TPU, PC, Nylon
- Filamentos Exóticos: Conductivo, brillante, magnético...
- Filamentos de Alta ingeniería: Fibra de Carbono, ASA, PC-ABS

7. Cómo hacer tus propias fotos en 3D.

- Fotografías de los alumnos a partir de Instagram
- Logotipos
- > Ideas: poner luz detrás y hacer un marco
- Recurso: https://of3lia.com/como-imprimir-fotos-en-3d/
- http://3dp.rocks/lithophane/



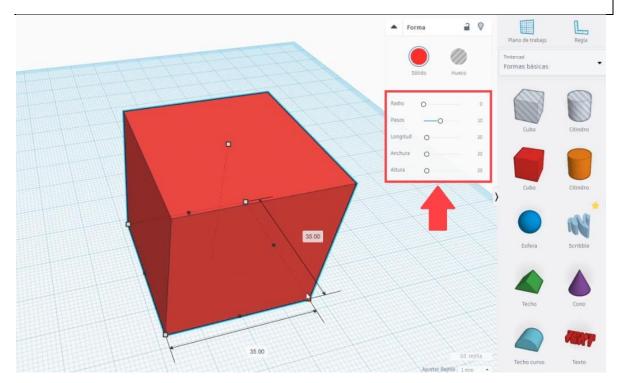


DÍA 1: DISEÑO 3D BASICO CON TINKERCAD Y FREECAD

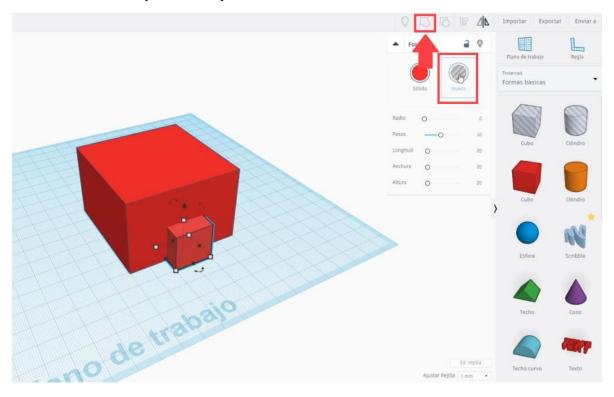
1. Qué es TinKerCAD y por qué usarlo

2. Cómo moverse con TinkerCAD

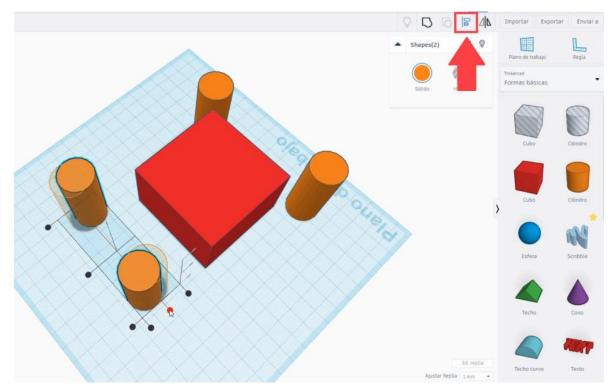
3. Interfaz de TinkerCAD



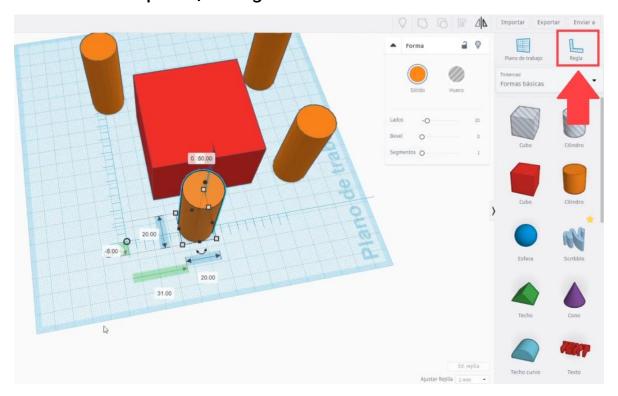
4. Tipos de Objetos que Existen en TinkerCAD



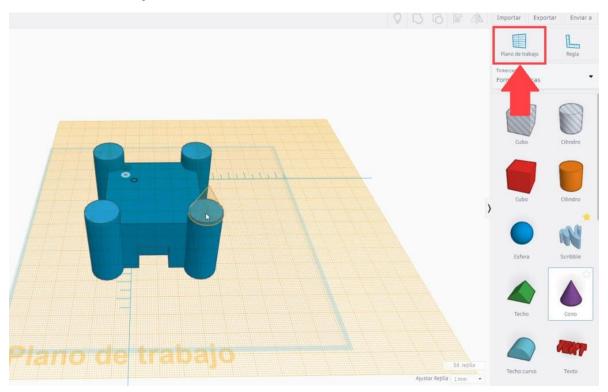
- 5. Creación de Objetos
 - a. Opción 1: Modificar Tamaños



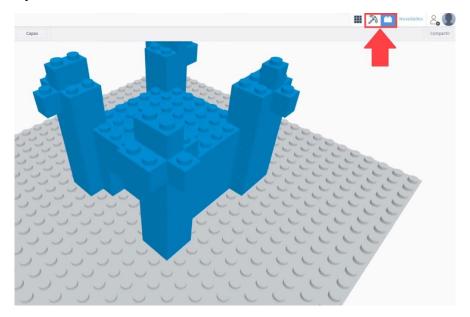
b. Opción 2: Operaciones Booleanas



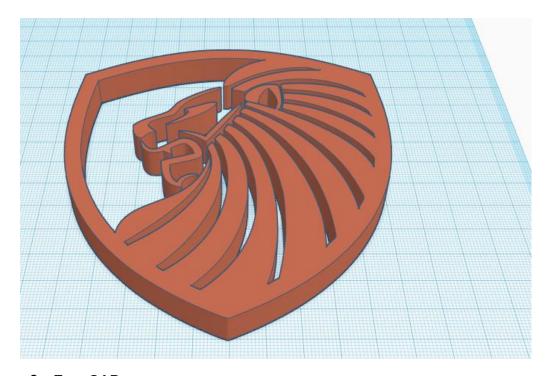
c. Opción 3: Alineaciones



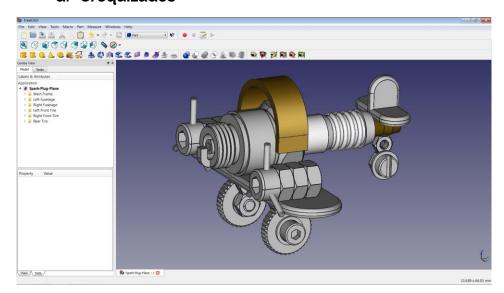
d. Opción 4: La Regla



e. Opción 5: Planos Auxiliares



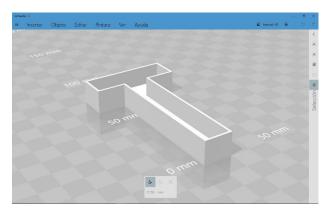
6. Opciones Adicionales



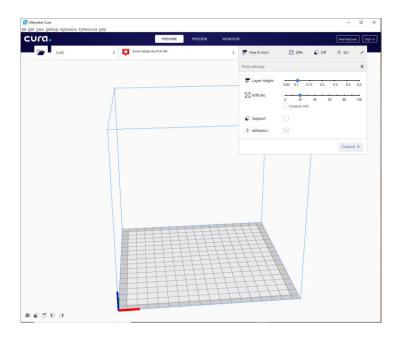
7. Modificación Modelos STL y Dibujos Vectoriales

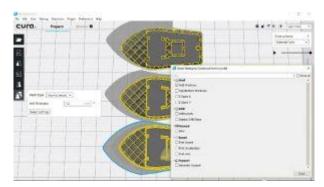
8. FreeCAD

- a. Propiedades de Visualización
- b. Traslaciones y Rotaciones
- c. Operaciones Booleanas
- d. Croquizados

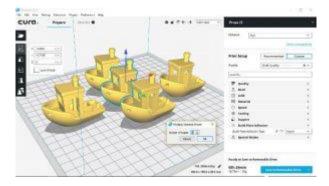


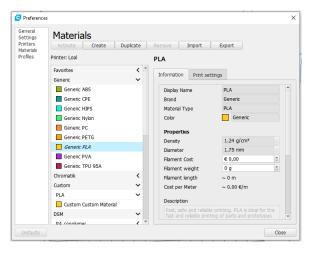
DÍA 3: LAMINAR CON CURA ULTIMAKER. MARLIN


1. ¿Qué es diseñar para imprimir en 3D?

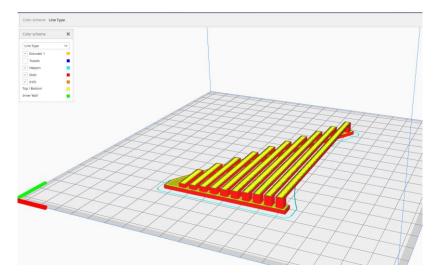

Usamos un laminador para configurarlo:

- Slic3r o Slic3r Prusa Edition
- Repetier Host (NO)
- Simplify 3D (150 dólares)
- Cura Ultimaker




- 2. ¿Cuánto filamento gastamos y Cuántas horas tardamos?
- 3. Modificar la pieza:
 - a. Escalado
 - b. Rotación
 - c. Traslación
 - d. Modo Mirror
 - e. Laminación por modelo

4. Multiplicar, Agrupar y Fusionar modelos 3D



5. Creación de Materiales y de Impresoras 3D

6. Preview: Modos de Visión de Cura

- 7. Parámetros en las piezas (ANEXO)
- 8. Preferencias Generales y Pluggins
- 9. AMPLIACIÓN: Marlin y GCODE

ANEXO: Parámetros que yo Uso y Tengo Activados

- QUALITY
 - Layer Height
 - Initial Layer Height
- SHELL
 - Wall Thickness
 - Wall Line Count
 - Top/Bottom Thickness
 - Top Tickness
 - Top Layers
 - Bottom Thickness
 - Bottom Layers
 - Alternate extra wall
 - Fill Gaps Between Walls
 - Horizontal Expansion
 - Z sean Alignment
 - Z seam X
 - Z seam Y
 - Seam Corner Preference
- INFILL
 - Infill Density
 - Infill Pattern
 - Infill Before Walls
- MATERIAL
 - Printing Temperature
 - Build Plate Temperature
 - Flow
 - Enable Retraction
 - Retract at layer change
 - Retraction Distance
 - Retraction Speed
- SPEED
 - Print Speed
 - Infill Speed
 - Wall Speed
 - Outer Wall
 Speed
 - Inner Wall
 Speed
 - Top/Bottom Speed
 - Support speed
 - Travel Speed

- Initial layer Speed
- Number of Slow layers
- TRAVEL
 - Z Hop When Retracted
- COOLING
 - Enable Print Cooling
 - Fan Speed
- SUPPORT
 - Generate Support
 - Support Extruder
 - Support Placement
 - Support Overhang Angle
 - Support Pattern
 - Support Density
 - Support Z Distance
 - Support X/Y Distance
 - Enable Support Interface
 - Enable Support Roof

BUILD PLATE ADHESION

- Build Plate Adhesion Type
- Skirt Line Count
- Brim Width
 - Brim Line Count
- Raft Extra Margin
- Raft Air Gap
- Raft Top Spacing

DUAL EXTRUSION

- Enable Prime Tower
- Primer Tower X Position
- Primer Tower Y Position
- MESH FIXES
 - Union Overlapping Volumes
 - Remove All Holes
- SPECIAL MODES
 - Print Sequence
 - Surface Mode
 - Spiralize Outer Contour
- EXPERIMENTAL
 - Tree Support
 - Spaghetti Infill
 - Wire Printing

DÍA 4: CALIBRACIÓN DE LA IMPRESORA Y CASOS PRÁCTICOS

1. PASOS DE CALIBRACIÓN

- > Limpia bien la impresora 3D
- > Tensa bien las correas
- > Cambia piezas desgastadas
- > Lubrica todo bien
- > Si puedes Meter Marlin
- > Ajusta el P.I.D
- > Mira los pasos de los motores
- > Calibra el flujo de plástico
- > Afina la distancia del Eje Z
- > Testéalo todo con un cubo

2. Marlin

Recurso para meter Marlin a una Ender 3: https://www.impresoras3d.com/como-instalar-marlin-en-tu-ender-3-sin-usar-ningun-programa/

Recurso para meter Márlin a una Anet A8: https://of3lia.com/impresora-3d-anet-a8/

3. Ejercicio práctico para profesores (1 hora):

- 1- Rellena la Hoja de Proyecto y Sesiones (Anexo). Debe ser un proyecto en el que incluyas el diseño y la impresión 3D.
- 2- Crea o Descarga las piezas que necesites.
- 3- Modifica la pieza si es necesario.
- 4- Lamínala.
- 5- Ponla a imprimir.

4. Vectorización y Modelado de imágenes

5. AMA (Ask me anythig).

ANEXO: Hoja de proyecto

	Respuesta
Concepto Nombre del proyecto	Respoesia
Objetivo principal del proyecto	
(Ej: Diseñar en 3D un llavero personalizado,	
hacer un robot humanoide, hacer un	
sistema de engranajes para ver cómo	
funcionan) Objetivos secundarios	
(Ej: Aprender las bases de la impresión 3D,	
incializarse en el diseño 3D, conocer el	
proceso de creación de un robot)	
Descripción del proyecto	
Nº de niños y Edad de los mismos	
NO de seciones y Temperalización (Al évimo	
Nº de sesiones y Temporalizacion (Máximo 3 sesiones)	
o sesiones,	
Materiales que necesitas para llevarlas a	
cabo.	
(Ej: Placa Arduino, ordenadores, software,	
conexión a internet, filamento PLA, ABS,	
Laca TODO, aquí hay que ser muy	
preciso/a)	
Coste total del proyecto	
(Sumar cada uno de los materiales y	
buscar su coste en internet. Ojo, la luz	
también cuesta dinero).	

ANEXO: Sesiones

SESION 1				
Concepto	Respuesta			
Día y duración de la sesión				
¿Qué vas a trabajar en esta sesión? Conceptos teóricos y prácticos				
Pasos a dar por los alumnos				
Materiales necesarios				
Observaciones				

SESION 2				
Concepto	Respuesta			
Día y duración de la sesión				
¿Qué vas a trabajar en esta sesión? Conceptos teóricos y prácticos				
Pasos a dar por los alumnos				
Materiales necesarios				
Observaciones				

SESION 3				
Concepto	Respuesta			
Día y duración de la sesión				
¿Qué vas a trabajar en esta sesión? Conceptos teóricos y prácticos				
Pasos a dar por los alumnos				
Materiales necesarios				
Observaciones				