Matemáticas "método Singapur"

Pedro Ramos Alonso Facultad de Educación Universidad de Alcalá

pedro.ramos@uah.es

http://masideas-menoscuentas.com/ @MsIdeasMnosCtas

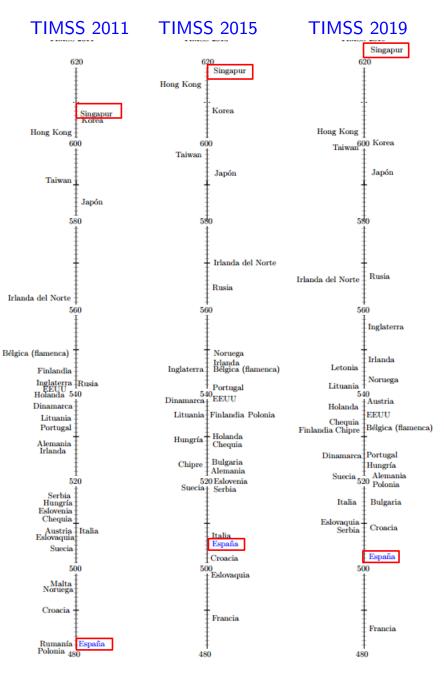
La situación actual en España

* ¿Estamos de acuerdo en que tenemos problemas?

* Información:

https://www.educacionyfp.gob.es/inee/evaluacionesinternacionales/timss/timss-2019.html

* ¿Tenemos un diagnóstico para origen de los problemas?



Pedro Ramos. Matemáticas Singapur.

Un vídeo para reflexionar

* Sobre la enseñanza de las matemáticas en Singapur en los años 70:

https://youtu.be/Lu2o_9LjWlw

- * Sus errores:
 - Exceso de cálculos tediosos.
 - Aprendizaje rutinario de procedimientos, sin entenderlos.
 - Aprendizaje memorístico.
- * El desarrollo de lo que se conoce como "método Singapur" fue la respuesta.
- * Basado en ideas "clásicas" de la didáctica de las matemáticas occidental.

1 | El aprendizaje en tres etapas (Jerome Bruner)

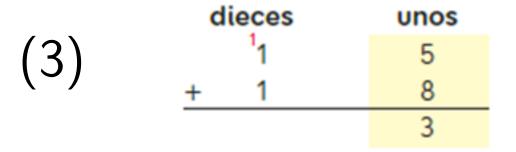
(1)

Concreto

1 El aprendizaje en tres etapas (Jerome Bruner)

(2) Pictórico (Gráfico)

 $\left|1\right|$ El aprendizaje en tres etapas (Jerome Bruner)



dieces		unos	
	¹ 1	5	
+	1	8	
	3	3	

Abstracto

El aprendizaje de los procedimientos y la comprensión de los conceptos deben trabajarse en paralelo.

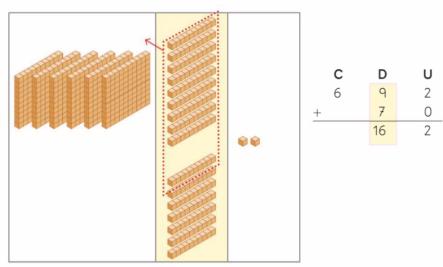
Richard Skemp: Relational understanding and instrumental understanding (1976)

Paso 2. Suma las decenas.

9 decenas + 7 decenas = 16 decenas

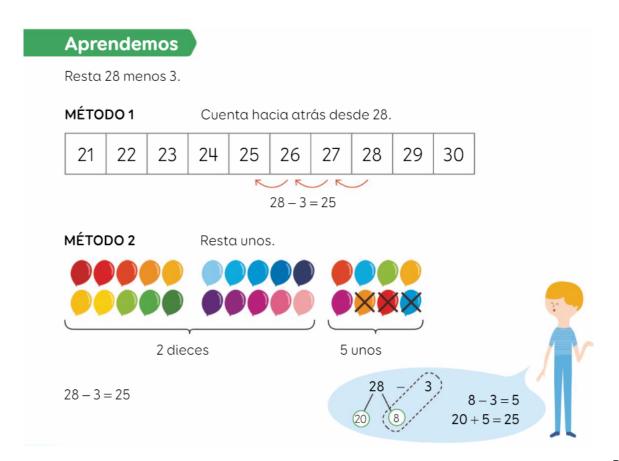
Reagrupa las decenas.

 $16 \operatorname{decenas} = 1 \operatorname{centena} + 6 \operatorname{decenas}$



3 Variedad en las presentaciones (Zoltan Dienes)

La comprensión de un concepto es mejor si se presenta desde distintos puntos de vista.



4 El andamiaje y la zona de desarrollo próximo (Vygotsky)

En lugar de ir diciendo al alumno "esto se hace así", se le proponen actividades que estén en su zona de desarrollo próximo.

$$\frac{1}{2} + \frac{1}{3} = \frac{\boxed{}}{6} + \frac{\boxed{}}{6} = \frac{\boxed{}}{6}$$

Fundamentos metodológicos (resumen)

- El aprendizaje en tres etapas (Jerome Bruner)
- El aprendizaje de procedimientos y la comprensión de los conceptos deben ir en paralelo (Richard Skemp)
- La importancia de la variedad en las presentaciones (Zoltan Dienes)
- El andamiaje y la zona de desarrollo próximo (Lev Vygotski)
 - Y un elemento adicional:
- La importancia de la verbalización.

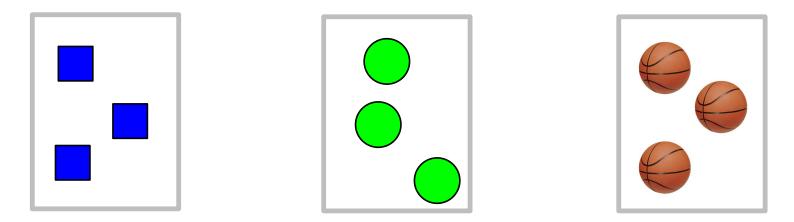
Los inicios con los números

- * En esta sesión nos vamos a centrar en la aritmética.
- * ¿Cuál es (o debería ser) el objetivo fundamental de aprendizaje (sobre números) durante la educación infantil?
- * El desarrollo del sentido numérico.
- * ¿Qué es el número tres?

£ :	6	<i>6</i>	6	6	· :
<u> </u>	<u> </u>	0	0		
4		<i>(</i> **,	<i>(</i> **····	-	
3	. 3	3	3	. 3	1

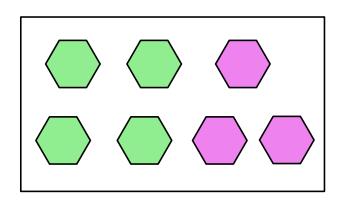
- * Es un trabajo que hay que hacer (en cantidad adecuada) pero que no tiene contenido matemático.
- * Aprender a contar (memorizar la secuencia numérica) es una actividad que es mejor trabajar dotándola de contenido.

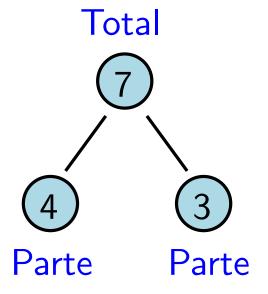
Los inicios con los números - El sentido numérico



* El concepto de tres es "lo que tienen en común" estos conjuntos.

Los números conectados





"number bonds"

cuatro y tres son siete

(esto debería ser previo a la suma)

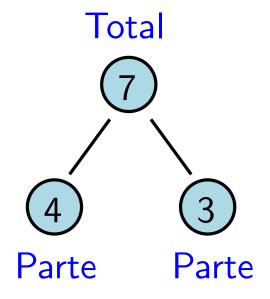
Materiales

policuboscubos encajables

Números conectados y policubos

Herramienta virtual (gratuita)

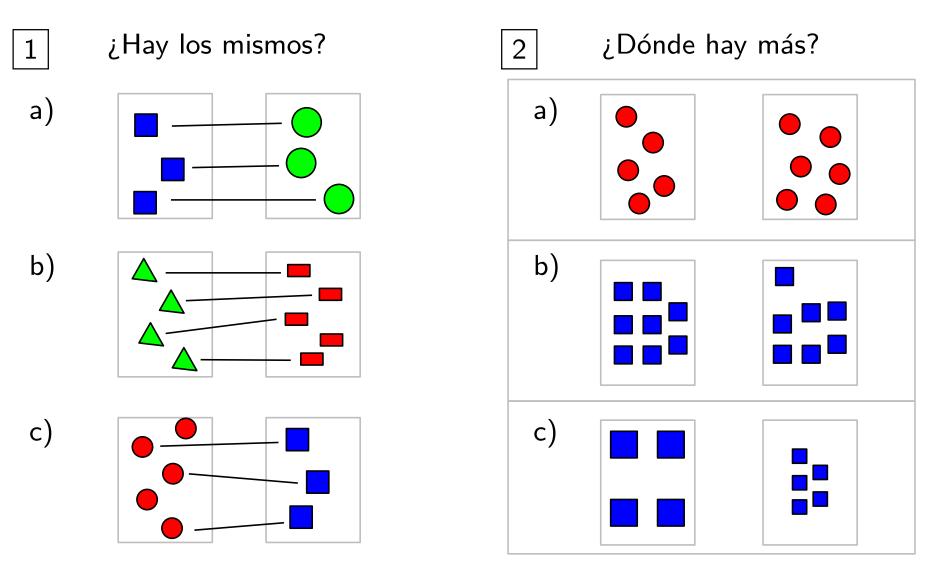
https://www.didax.com/apps/unifix/



Regletas

Comparar conjuntos

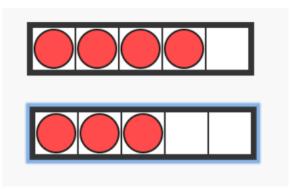
* Importante para el desarrollo del sentido numérico.



De https://masideas-menoscuentas.com/2014/09/04/libro-de-1o-de-primaria/

Estrategias de iniciación a la suma

* Rejillas numéricas (grupos de 5).



https://www.mathlearningcenter.org/resources/apps

- * Otras estrategias: usar los dobles, la compensación ...
- * El uso de materiales es fundamental.

$$4 + 5 = 4 + 4 + 1 =$$

$$5 + 3 = 4 + 4 =$$

Formas de sumar

- 1. Sumar contando.
 - a) contar todo.
 - b) contar desde un sumando el mayor.
- 2. Sumar sin contar.

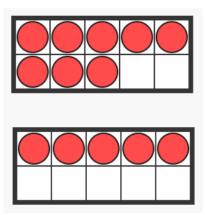
Fundamental desarrollar estrategias antes de empezar con el algoritmo tradicional.

Hay que trabajarlo de forma gradual, primero hasta el 10.

Actividad: suma de dos números de una cifra

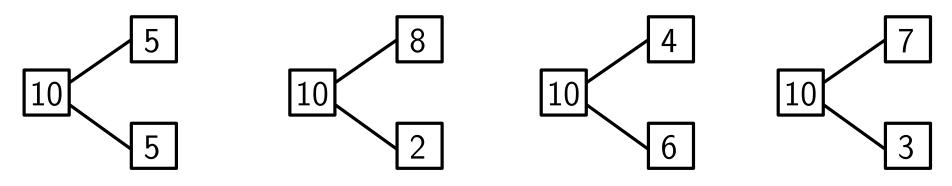
* Pensar diferentes estrategias para calcular 8 + 5.

$$8+5=$$
 "diez y tres"



https://www.mathlearningcenter.org/resources/apps

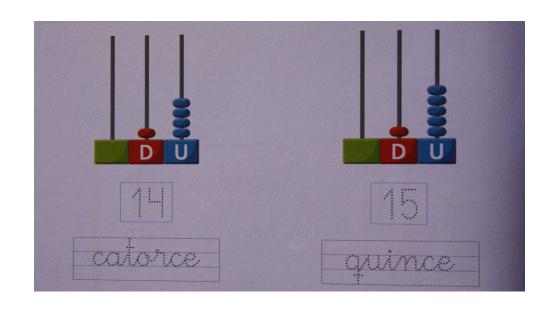
* Descomponer el 10 (los "amigos del diez") será especialmente útil.



Pedro Ramos. Matemáticas Singapur.

El número de dos cifras

* Enfoque "tradicional":



* Alternativa: hacemos grupos de diez.

Los materiales, de nuevo fundamentales.

1 Cuenta en dieces y en unos.

El número de dos cifras

* Bloques de base 10



* Una alternativa online: https://apps.mathlearningcenter.org/number-pieces/

Algoritmos de la suma

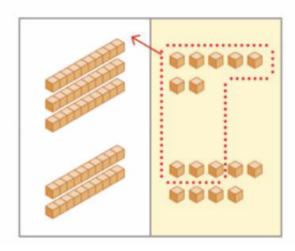
- * Hay formas muy distintas de presentar el "algoritmo tradicional".
- * Calcula 37 + 29.

Paso 1. Suma los unos.

7 unos + 9 unos = 16 unos

Reagrupa los unos.

16 unos = 1 diez y 6 unos



dieces		unos
	1	
	3	7
+	2	9
		6

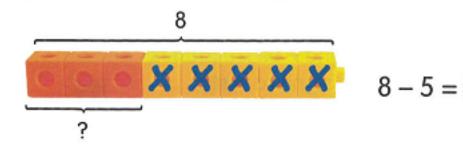
Actividad

* Utilizar los bloques de base 10 para calcular estas sumas, haciendo con los materiales los reagrupamientos (llevadas) necesarios.

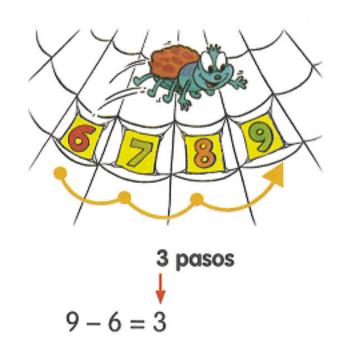
$$\begin{array}{r} 3 \ 6 \ 3 \\ + 1 \ 7 \ 4 \end{array}$$

La resta

"De 8 quitamos 5"



"Del 6 al 9 van ..."



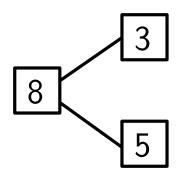
* Hay que trabajar los dos significados.

Formas de restar

- 1. Restar contando.
 - a) restar quitando.
 - b) contar desde el menor.
- 2. Restar sin contar.

Fundamental desarrollar estrategias antes de empezar con el algoritmo tradicional.

- * La conexión con la suma es fundamental.
- * Los números conectados son una herramienta muy útil.

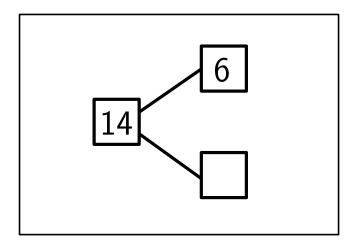


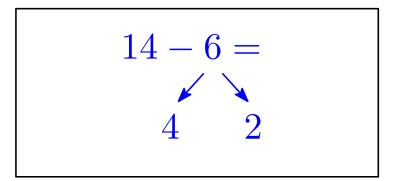
$$3 + 5 = 8$$
 $8 - 5 = 3$

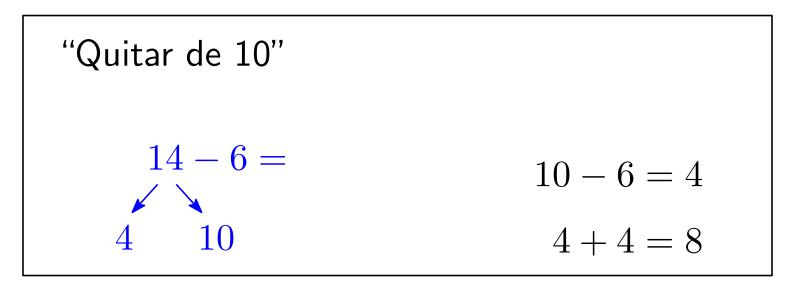
$$5 + 3 = 8$$
 $8 - 3 = 5$

Actividad

* Pensar estrategias para calcular 14 - 6 (sin contar).







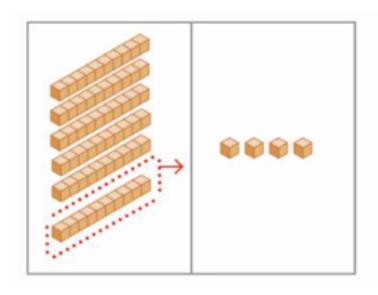
Algoritmos para la resta

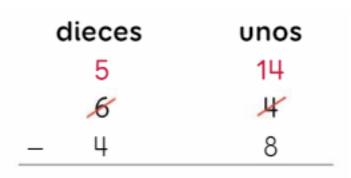
El algoritmo tradicional (en España)

$$-rac{6 \ 4}{4 \ 8}$$
 $-rac{1 \ 6}{1 \ 6}$

* Una alternativa (ya bastante extendida en nuestras aulas):

$$-\begin{array}{l} 6 & 4 \\ 4 & 8 \end{array}$$





Actividad

* Utilizar los bloques de base 10 para calcular estas restas, haciendo con los materiales los reagrupamientos necesarios.

$$-\frac{5}{1}\frac{3}{8}$$

$$-\, rac{4\,\,0\,\,3}{1\,\,3\,\,7}$$

¿Y el "cálculo mental"?

- * Los números conectados y la recta numérica vacía son excelentes herramientas para desarrollar estrategias de cálculo flexible.
- * Piensa diferentes estrategias para calcular:

a)
$$123 + 45$$

c)
$$145 - 28$$

b)
$$98 + 137$$

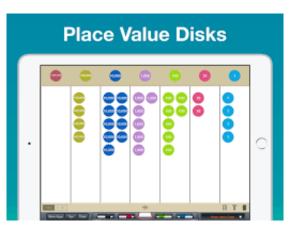
d)
$$203 - 106$$

En 3.°, el grupo de mil

* Representar los números de 4 cifras con los bloques de base 10 empieza a ser poco manejable.

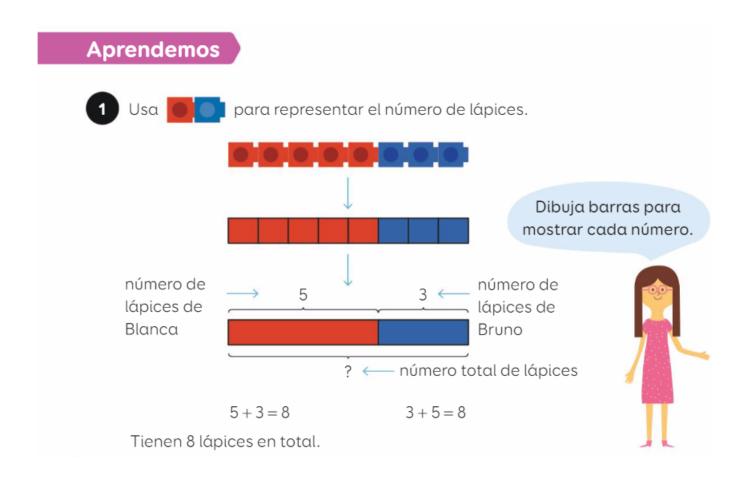
Es prematuro prescindir de un apoyo en la representación (al menos para algunos alumnos).

* Los discos numéricos (number disks) son una buena alternativa.



Resolución de problemas

- * Y este problema ... ¿es de sumar o de restar?
- * Una herramienta muy útil: el modelo de barras.

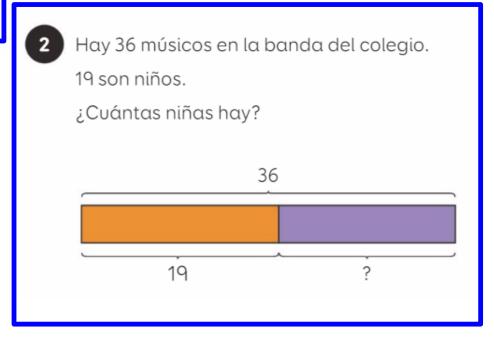


Partes - Total

Resuelve.

1 Pau tenía 45 cromos.
Su padre le ha dado 39 más.
¿Cuántos cromos tiene ahora Pau?

45 39
?



Observaciones

- * Para que el modelo sea efectivo hay que introducirlo y trabajarlo adecuadamente.
- * En el paso de representar 15 unidades explícitamente a representarlas con una barra hay una abstracción a la que hay que prestar la atención necesaria.
- * En este modelo el alumno se centra en las relaciones, no en los objetos ni en las cantidades descontextualizadas.
- * Los objetos son representados mediante rectángulos, un rectángulo es un objeto fácil de dibujar, de dividir. Útil para representar números más grandes y mostrar relaciones de proporcionalidad.

Modelo de comparación

* Rosa tiene 35 euros. Sabemos que Rosa tiene 14 euros más que Luis. ¿Cuánto dinero tiene Luis?

Problemas

- 1. Ana ha comprado una caja con 345 caramelos, María ha comprado otra caja que tiene 230 caramelos más.
 - a) ¿Cuántos caramelos tiene la caja de María?
 - b) ¿Cuántos caramelos tienen entre las dos?
- 2. Un pastelero ha hecho 35 bollos rellenos de chocolate, y también ha hecho bollos rellenos de crema. Sabemos que ha hecho 19 bollos de chocolate más que bollos de crema.
 - a) ¿Cuántos bollos de crema ha hecho el pastelero?
 - b) ¿Cuántos bollos ha hecho en total?
- 3. Jaime tiene 15 euros más que Lucía y entre los dos tienen 97 euros. ¿Cuánto dinero tiene cada uno?

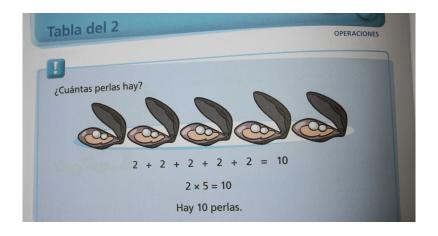
3. Jaime tiene 15 euros más que Lucía y entre los dos tienen 97 euros. ¿Cuánto dinero tiene cada uno?

Problemas

- 1. Luis tiene 316 euros y su amiga Marta tiene 488 euros. ¿Cuánto tiene que darle Marta a Luis para que los dos se queden con la misma cantidad de dinero?
- 2. Tengo 765 euros y quiero repartirlos entre Alicia y Benito, de manera que Alicia reciba el doble que Benito. ¿Cuánto dinero recibirá cada uno?
- 3. Lisa tiene 128 euros y Pablo tiene 97 euros. Se compraron dos abrigos iguales, y después de pagar Lisa tenía el doble de dinero que Pablo. ¿Cuánto les costó el abrigo?

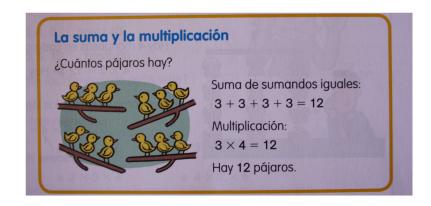
La multiplicación

- * ¿Cómo se puede introducir?
- * Una opción: "multiplicado por"



* La alternativa: "veces"

 3×4 significa 3 veces 4



$$3 \times 4 = 3 + 3 + 3 + 3$$

$$3 \times 4 = 4 + 4 + 4$$

Veces ↔ Multiplicado por

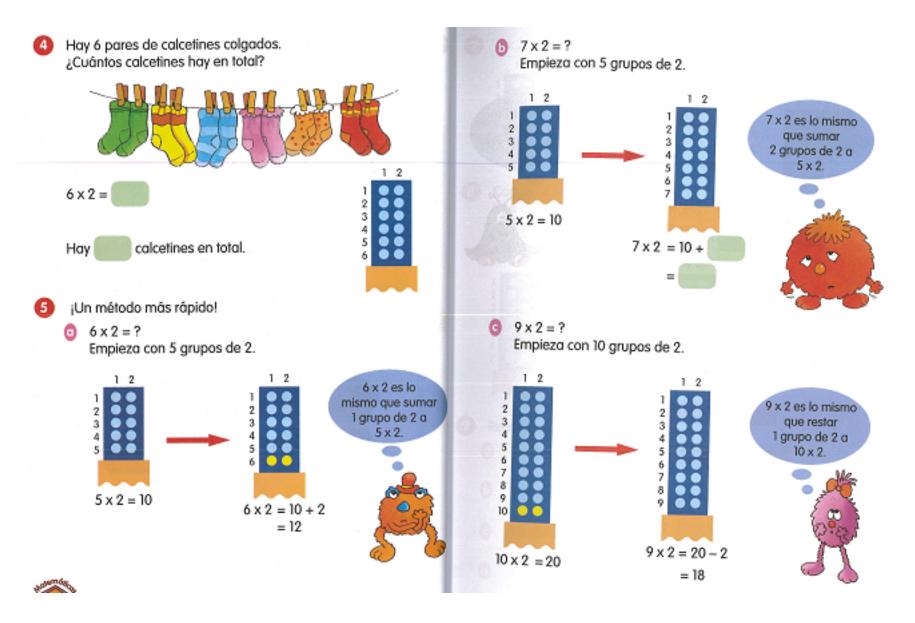
- * A nivel internacional, no hay mayoría clara.
- * Controversia en el periódico. ¿Por qué no es lo mismo 5×3 que 3×5 ?

http://verne.elpais.com/verne/2015/10/31/articulo/1446292466_

- * La ventaja de usar "veces": inmediato de entender.
- * Pero, ojo: "veces" y las tablas de multiplicar.

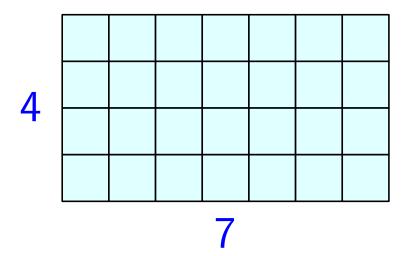
* Lo más importante: evitar contradicciones. ¿El doble de 6?

Aprendizaje comprensivo Memorización



El modelo de área

 7×4

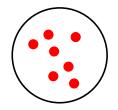


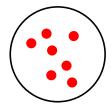
- a) Muy útil para entender varias propiedades de la multiplicación.
- b) Conexión con la geometría.

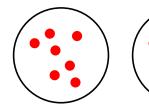
Propiedades de la multiplicación

* Conmutativa

* Ojo: no es nada intuitivo que 4 veces 7 sea igual que 7 veces 4



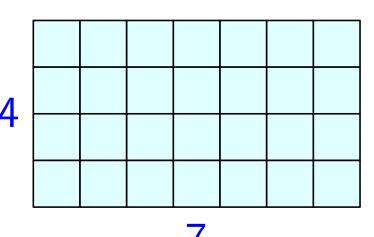




* Modelo de área.

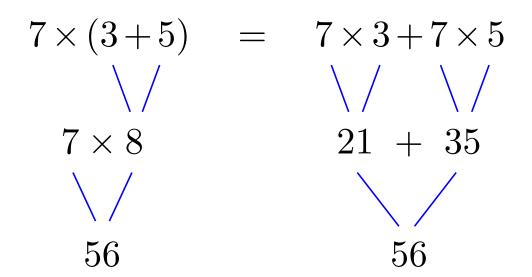
$$3 \times 5 = 15$$

$$5 \times 3 = 15$$



Propiedades de la multiplicación

- * Propiedad distributiva
- * ¿Qué sentido tiene en primaria?
- * En los libros de texto ...



Propiedad distributiva

- * Fundamental para:
 - i) manipulaciones algebraicas: 2(x+3) = 2x+6
 - ii) cálculo natural (pensado, mental):

$$13 \times 8 = (10 + 3) \times 8 = 10 \times 8 + 3 \times 8 = 80 + 24 = 104$$

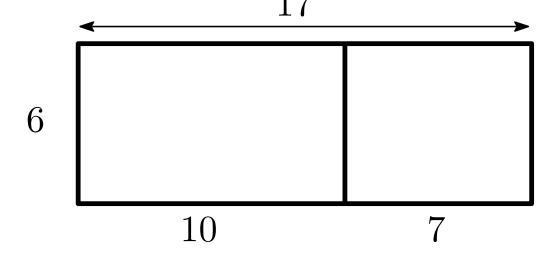
 $7 \times 16 = 7 \times (10 + 6) = 7 \times 10 + 7 \times 6 = 70 + 42 = 112$

- iii) algoritmo tradicional (y otras variantes) de la multiplicación.
- * Lo ideal es trabajar la propiedad distributiva junto con sus aplicaciones.

El modelo de área

* Una excelente ayuda para la comprensión de las propiedades y para la introducción del algoritmo.

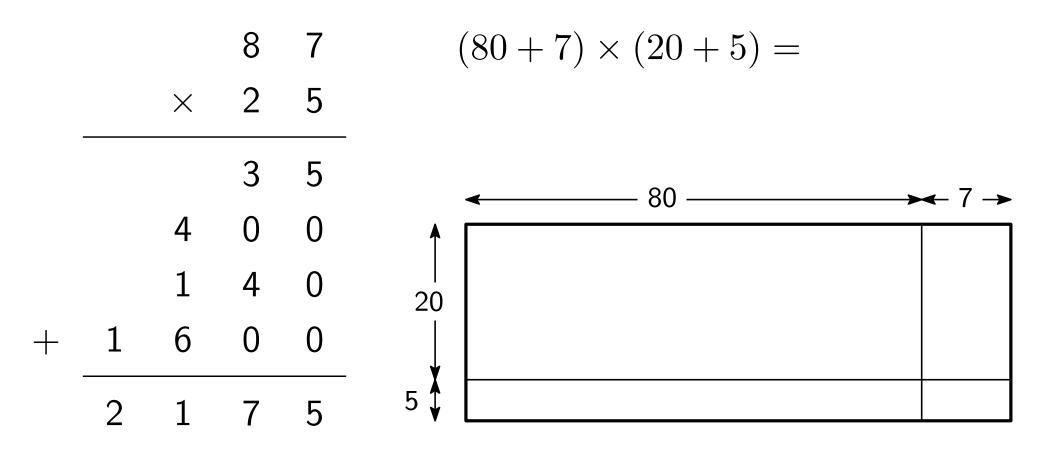
$$6 \times 17 = 6 \times 10 + 6 \times 7$$



	1	7
	×	6
	4	2
+	6	0
1	0	2

Algoritmos de la multiplicación

- * ¿Y si queremos multiplicar por un número de dos cifras?
- Una idea: usar el modelo de área.
 (El vídeo enlazado es de la Khan Academy.)



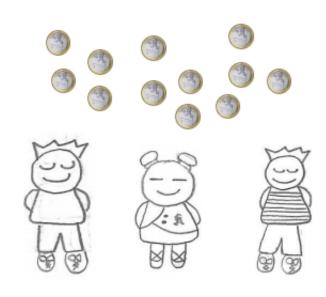
La división

- * "Dividir es repartir". ¿Siempre?
- 1) Luis Ileva 20 caramelos al colegio y quiere repartirlos entre 4 amigos. ¿Cuántos caramelos le da a cada amigo?
- 2) Luis tiene 20 caramelos y hace bolsas con 4 caramelos. ¿Cuántas bolsas puede hacer?
- * El segundo significado es la división de agrupamiento. Tiene el sentido de "hacer grupos iguales". (No se trabaja lo suficiente en nuestras aulas). Relación con medida: ¿cuántas veces "cabe" 4 en 20?

Introducción de la división

Agrupa las monedas de la figura, para repartirlas por igual entre los tres amigos.

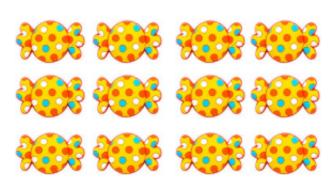
$$12:3=4$$



 e) Con los caramelos de la figura, hacemos bolsas con 4 caramelos cada una.

Necesitamos bolsas

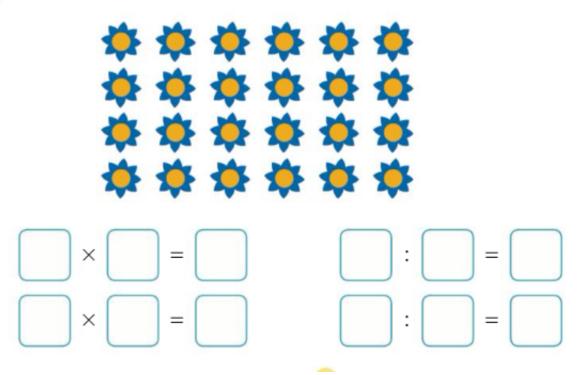
$$12:4=3$$



Multiplicación y división

* Es importante trabajar la relación entre multiplicación y división, como operaciones inversas.

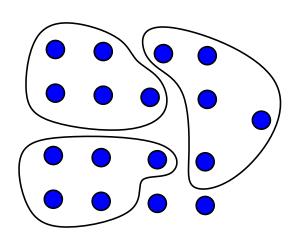
1 Escribe la familia de multiplicaciones y divisiones.



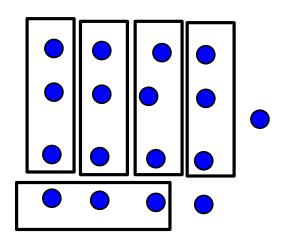
Introducción del algoritmo

- * Repartimos 17 caramelos entre 3 amigos.
 - 1. ¿cuántos caramelos le damos a cada amigo?
 - 2. ¿cuántos caramelos sobran?

- * Con 17 caramelos hacemos bolsas de 3 caramelos.
 - 1. ¿cuántas bolsas salen?
 - 2. ¿cuántos caramelos sobran?

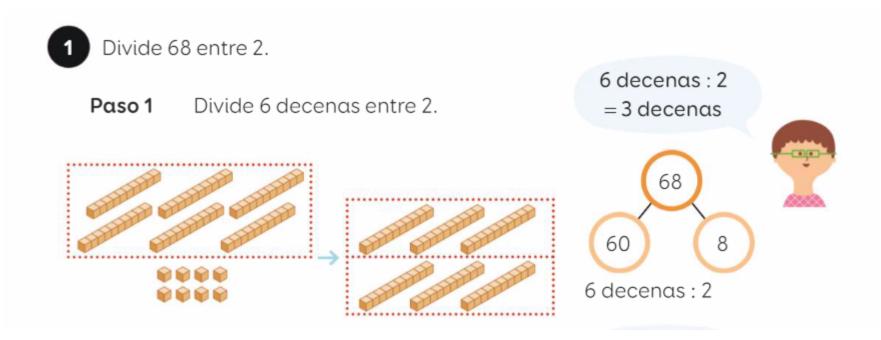


$$\begin{array}{c|c|c}
-17 & 3 \\
\hline
15 & 5
\end{array}$$



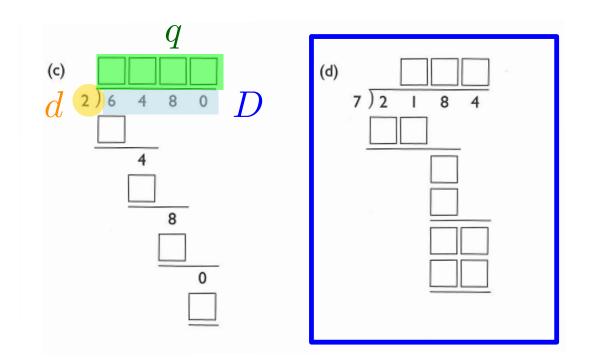
Algoritmo de la división: introducción

* También aquí debemos apoyarnos en los materiales, al principio.



* ¿Y si queremos hacer la división $52 \div 4$?

Divisiones en 4° – Singapur



* Los divisores de dos (o más) cifras han desaparecido del currículo (ya hace algunos años).

Algoritmos de división

* Algoritmo tradicional: dos versiones.

Algoritmo "extendido"

Algoritmo "usual" ("comprimido")

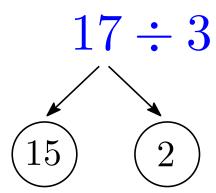
¿Otros algoritmos?

Una propuesta

Algoritmo de los "cocientes parciales"

¿Otros algoritmos?

* Basado en las descomposiciones de números:



- * Haz estos cálculos con los algoritmos indicados:
 - i) 147 ÷ 8, descomponiendo y con cocientes parciales.
 - ii) $1347 \div 26$, con cocientes parciales.

Un resumen

* En estos vídeos de Graham Fletcher se resumen muy bien las ideas del desarrollo de la multiplicación y la división a lo largo de primaria:

https://vimeo.com/149428217

https://vimeo.com/153668928

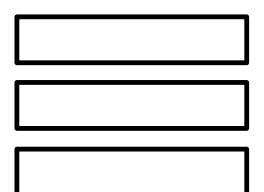
Las fracciones: un objeto, varias interpretaciones

(1) Parte de un todo

Hemos coloreado los 3/5 de ...

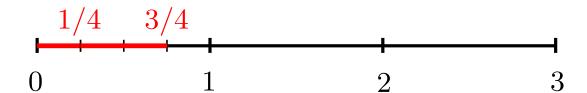
(2) Un reparto (división)

Queremos repartir 3 chocolatinas entre 5 niños. ¿A cuánto toca cada uno?



(3) Una cantidad (un número, un punto de la recta numérica)

$$\frac{3}{4}$$
 ?

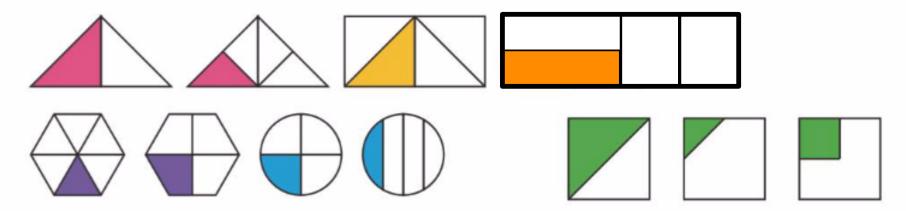


El denominador fija la unidad

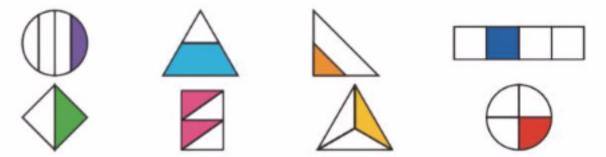
El numerador, cuántas unidades tomo

Importante en el aula

- * Para entender un nuevo concepto, es importante ver ejemplos positivos y negativos.
- 1 ¿Qué figuras están divididas en cuartos?



3 ¿Qué figuras representan $\frac{1}{2}$ o $\frac{1}{4}$? Rodea con diferentes colores.



Algunos ejemplos

* He comido 1/3 de los bombones de una caja y me quedan 12 bombones. ¿Cuántos bombones tenía la caja?

12 bombones

* Lucía tenía la misma cantidad de cuentas rojas que azules. Usó 3/4 de sus cuentas rojas y la mitad de sus cuentas azules para hacer un collar. ¿Qué fracción del total de sus cuentas ha usado para hacer el collar?

Definición de fracción

* Una fracción es una expresión de la forma son números enteros y $b \neq 0$.

numerador

 $\frac{a}{b}$ donde a y b

denominador no es un número

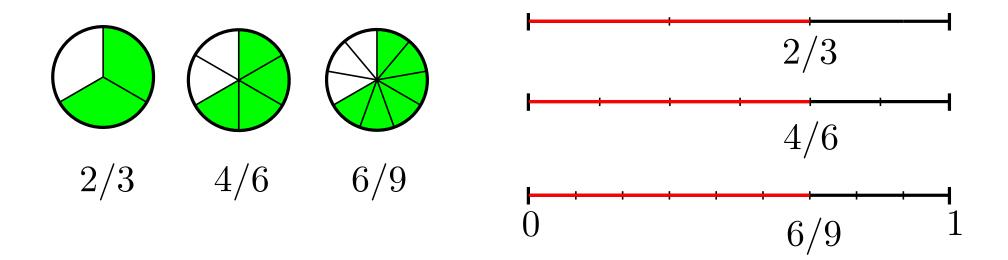
$$\frac{1}{2} + \frac{1}{3} =$$

$$1 \text{ medio} + 1 \text{ tercio} =$$

Fracciones equivalentes

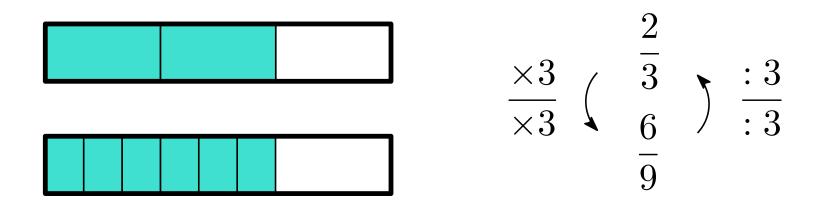
* Las fracciones 2/3, 4/6, 6/9,... representan la misma cantidad.

Diremos que son fracciones equivalentes.



Fracciones equivalentes

* Es un concepto básico, y es fundamental que se entienda bien.

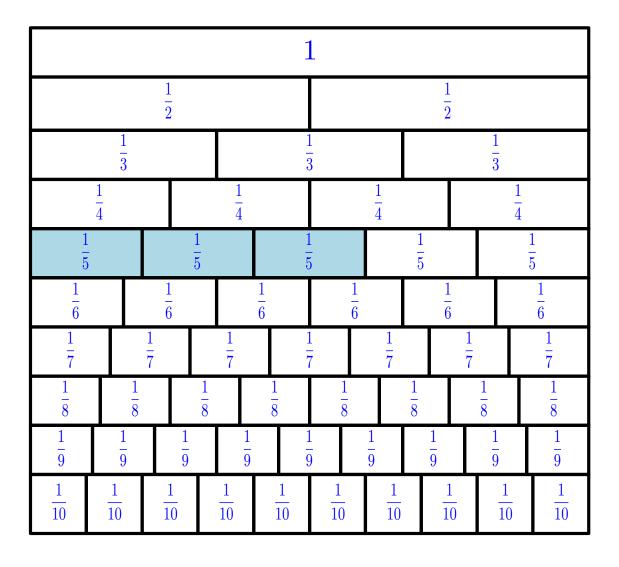


* Una herramienta muy útil: el muro de fracciones.

Muro de fracciones

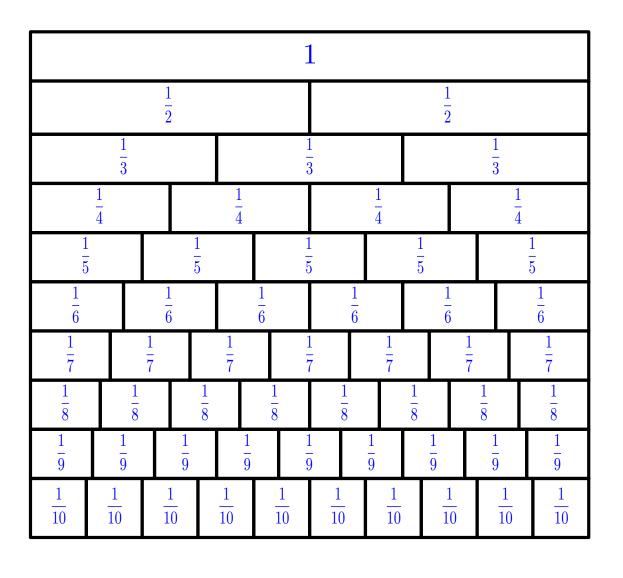
								1	-							
			-	<u>1</u>									$\frac{1}{2}$			
		$\frac{1}{3}$						-	1 3					-	$\frac{1}{3}$	
	$\frac{1}{4}$					$\frac{1}{4}$					$\frac{1}{4}$				$\frac{1}{4}$	
$\frac{1}{5}$					<u>[</u>			-	<u>[</u>			1	-			$\frac{1}{5}$
$\frac{1}{6}$			-	1 5			$\frac{1}{6}$			$\frac{1}{6}$			$\frac{1}{6}$			$\frac{1}{6}$
$\frac{1}{7}$			$\frac{1}{7}$			$\frac{1}{7}$		- - -	1 7		$\frac{1}{7}$			$\frac{1}{7}$		$\frac{1}{7}$
$\frac{1}{8}$		$\frac{1}{8}$			$\frac{1}{8}$		<u>1</u>	3		$\frac{1}{8}$		$\frac{1}{8}$		$\frac{1}{8}$		$\frac{1}{8}$
$\frac{1}{9}$		$\frac{1}{9}$		$\frac{1}{9}$		$\frac{1}{9}$	-	-	1		$\frac{1}{9}$		$\frac{1}{9}$	-	1 9	$\frac{1}{9}$
$\frac{1}{10}$	-	$\frac{1}{10}$	_]	10		$\frac{1}{10}$		$\frac{1}{10}$		$\frac{1}{10}$	$\frac{1}{10}$		$\frac{1}{10}$		$\frac{1}{10}$	$\frac{1}{10}$

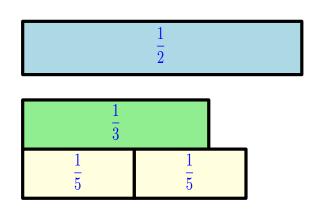
Muro de fracciones

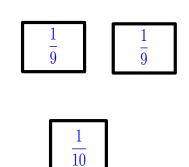


Descomposición egipcia

$$\frac{3}{5} = \frac{1}{\boxed{}} + \frac{1}{\boxed{}}$$

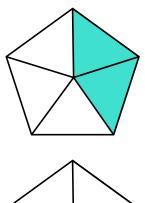


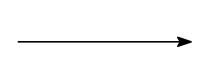




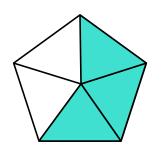
Suma de fracciones

* Un posible problema del enfoque más extendido:





$$\frac{2}{5} + \frac{1}{5} = \frac{3}{5}$$



Suma de fracciones

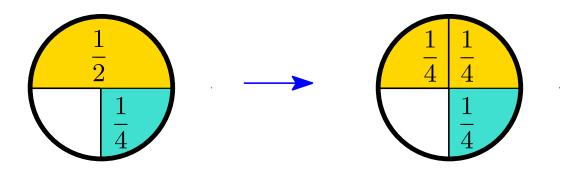
* En lugar de "dar la receta", ayudar a dar pasos hacia ella.
 (Zona de desarrollo próximo – Vygotsky)

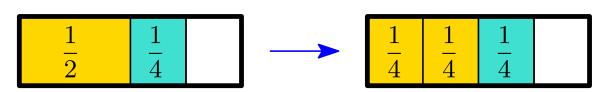
$$\frac{1}{2} + \frac{1}{3} = \frac{\boxed{}}{6} + \frac{\boxed{}}{6} =$$

* Es importante, al principio, mostrar el significado de lo que hacemos.

$$\frac{1}{2} + \frac{1}{4} = \frac{2}{4} + \frac{1}{4} = \frac{3}{4}$$

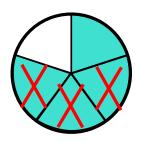
Fracciones relacionadas





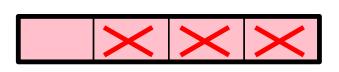
Resta de fracciones (mismo denominador)

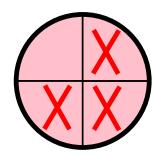
$$\frac{4}{5} - \frac{3}{5} = \frac{1}{5}$$



* Dos amigos compraron una tarta y se comieron entre los dos 3/4 de la tarta. ¿Cuánta tarta sobró?

$$1 - \frac{3}{4} = \frac{1}{4}$$

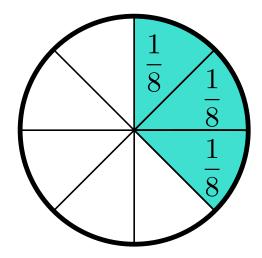




* ¿Es necesario/conveniente escribir $1 - \frac{3}{4} = \frac{4}{4} - \frac{3}{4} = \frac{1}{4}$?

Resta de fracciones

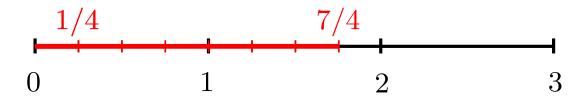
$$\frac{3}{8} - \frac{1}{4} =$$



|--|

Fracciones impropias

* ¿Qué significa $\frac{7}{4}$?



La recta numérica

* Ayuda a entender que
$$\frac{7}{4} = 1 + \frac{3}{4}$$

¿Números mixtos?

* Esta interpretación será especialmente útil cuando aparezcan los números decimales.

Multiplicación de fracciones

- * Desde el punto de vista del algoritmo, multiplicar fracciones es más sencillo que sumarlas. Sin embargo, desde un punto de vista conceptual es mucho más complicado.
- * Vamos a ir paso a paso:

i)
$$5 \times \frac{2}{3}$$

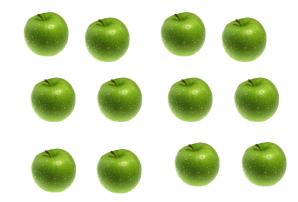
Es importante cómo la interpretamos, cómo la verbalizamos.

"cinco veces dos tercios"

Multiplicación de fracciones

ii) Fracción de una cantidad: $\frac{2}{3} \times 12$.

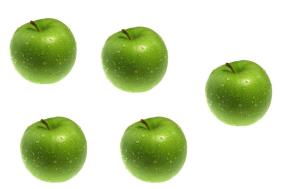
¿Cómo lo haría un alumno al que no le damos "instrucciones"?



- * El procedimiento que luego usamos debería respetar esa idea.
- * Además, estamos descubriendo que multiplicar por 1/3 es equivalente a dividir por 3.

Multiplicación de fracciones

iii) ¿Y qué pasa con
$$\frac{2}{3} \times 5$$
?



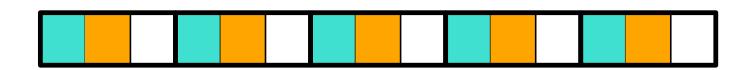
Un requisito previo es haber entendido la fracción como

división, y que
$$\frac{1}{3} \times 5 = \frac{5}{3}$$
.

Multiplicación de fracciones

$$\frac{2}{3} \times 5$$
.

"Dos veces un tercio de cinco"



- * Como podemos ver, "dos tercios de cinco es lo mismo que cinco veces dos tercios".
- * Principales errores:
 - \circ "2/3 de 12" \rightarrow "se multiplica por 2 y se divide por 3"

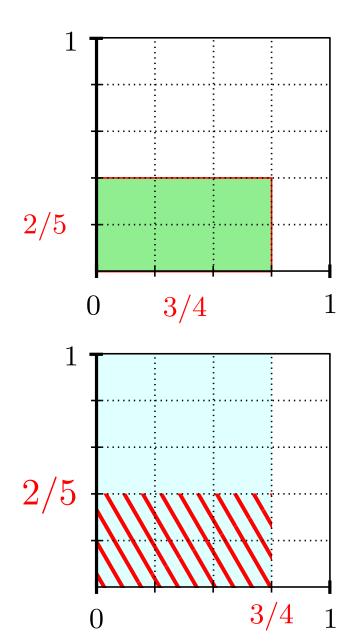
$$\circ$$
 "2/3 de 12" \to $\frac{2}{3} \times 12 = \frac{2}{3} \times \frac{12}{1}$

No muestran el significado de la operación.

Multiplicación de fracciones. Modelo de área

$$\frac{3}{4} \times \frac{2}{5} = \frac{6}{20}$$

También aquí se puede ver que $\frac{2}{5} \times \frac{3}{4}$ significa 2/5 de 3/4.



División de fracciones: primeros ejemplos

* Cuando el divisor es un número natural:

$$\frac{4}{5} \div 2 =$$

$$\frac{3}{5} \div 2 =$$

* Empezar así muestra que no todo es "raro" cuando aparecen las fracciones.

Siguiente paso

* ¿Cuántas botellas de 2/3 de litro se pueden rellenar con 5 litros de agua? Calcula el resultado de manera gráfica.

* Buscando un procedimiento general. Calcula (gráficamente)

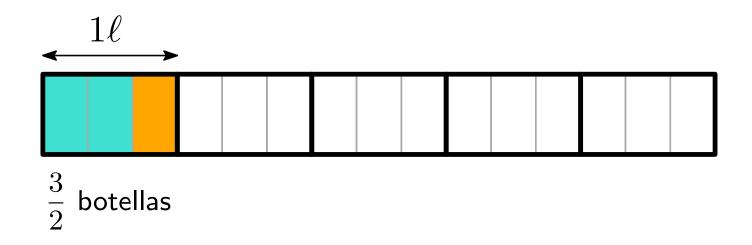
a)
$$1:\frac{2}{3}$$
 b) $1:\frac{3}{4}$ c) $1:\frac{2}{5}$

b)
$$1: \frac{3}{4}$$

c)
$$1:\frac{2}{5}$$

Procedimiento general

* ¿Cuántas botellas de 2/3 de litro se pueden rellenar con 5 litros de agua?



*
$$5: \frac{2}{3} = 5 \times \frac{3}{2} = \frac{15}{2} = 7 + \frac{1}{2}$$

es decir, para dividir por una fracción, se multiplica por su inversa (la fracción "dada la vuelta")

Decimales

* Para esto, el euro ha sido un regalo.

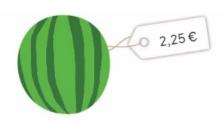
* El manejo simbólico (la aritmética) debería ser bastante posterior.

Seguimos en 3°

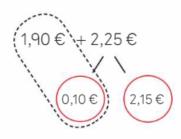
Sumar dinero

Exploramos

¿Cuánto ha pagado Omar?



MÉTODO 1



MÉTODO 2

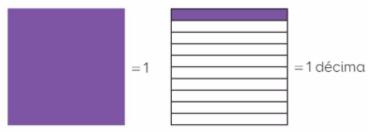
$$1 \in +2 \in =3 \in$$

0,90 \in + 0,25 = 1,15 \in \in

$$3 \in +1,15 \in = 4,15 \in$$

En 4°

1 Divide 1 en 10 partes iguales.

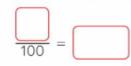


1 décima parte = $\frac{1}{10}$ = 0,1

0,1 se lee una décima. La coma se llama coma decimal.

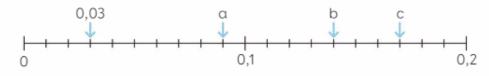
 $\frac{1}{10}$ es 0,1 cuando se expresa como decimal.

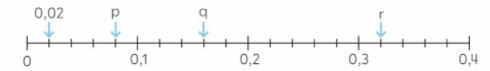
¿Qué representa cada parte coloreada?

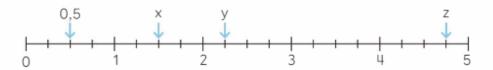


¿Cómo lees este número?

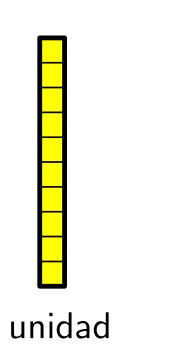
¿Cuál es el decimal que corresponde a cada letra?

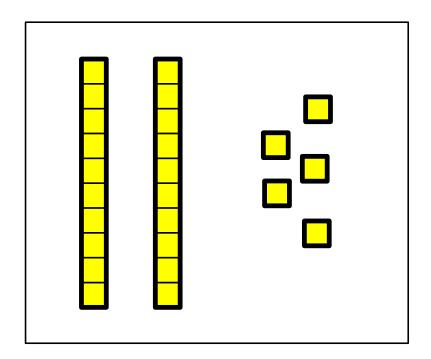




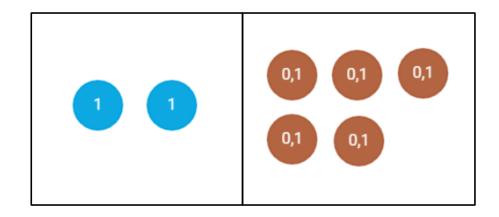


Representaciones de los decimales

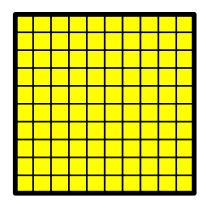


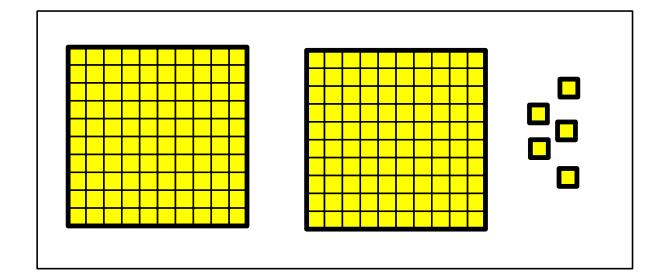


Fichas numéricas

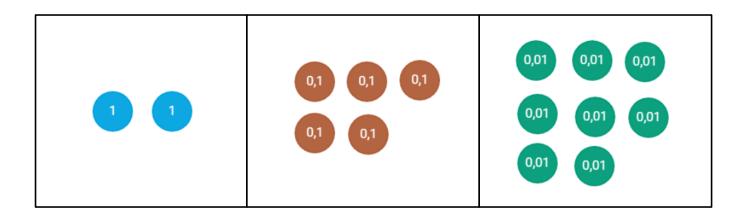


Representaciones de los decimales





unidad



Decimales – Fracciones

- * Parece que muchas veces usamos los decimales para "huir" de las fracciones.
- * La comprensión de las fracciones es un prerrequisito para la comprensión de los decimales.

Aritmética con números decimales

$$-\begin{array}{r} 1 & 2,0 & 4 \\ \hline & 5,2 & 9 \\ \hline & 6,7 & 5 \end{array}$$

- * ¿Dificultades de aprendizaje? → Materiales
- * La multiplicación. Una prueba sencilla, antes de empezar,

$$2 \times 0.3 = 0.6$$

 $3 \times 0.3 = 0.9$
 $4 \times 0.3 = ??$

Después

$$\begin{array}{r}
 3,47 \\
 \hline
 4 \\
 \hline
 13,88
\end{array}$$

Finalmente

$$\frac{\times 0.4}{0.8}$$
 $\frac{1,9}{2}$

Recurrimos a las fracciones

$$* \quad 0.8 = \frac{8}{10} \qquad \qquad 2.4 = \frac{24}{10}$$

$$2,4 \times 0,8 = \frac{24}{10} \times \frac{8}{10} = \frac{24 \times 8}{100}$$

$$\frac{2,4}{0,8}$$
 $\frac{1,9}{2}$

La división con números decimales

* Divisor entero:

Cocientes parciales

* Divisor no entero:

$$4,71 \div 0,3 = 47,1 \div 3 =$$
 $\times 10$

* Fracciones: $4,71 \div 0,3 = \frac{471}{100} \div \frac{3}{10} = \frac{471}{100} \times \frac{10}{3} = \frac{471}{30}$

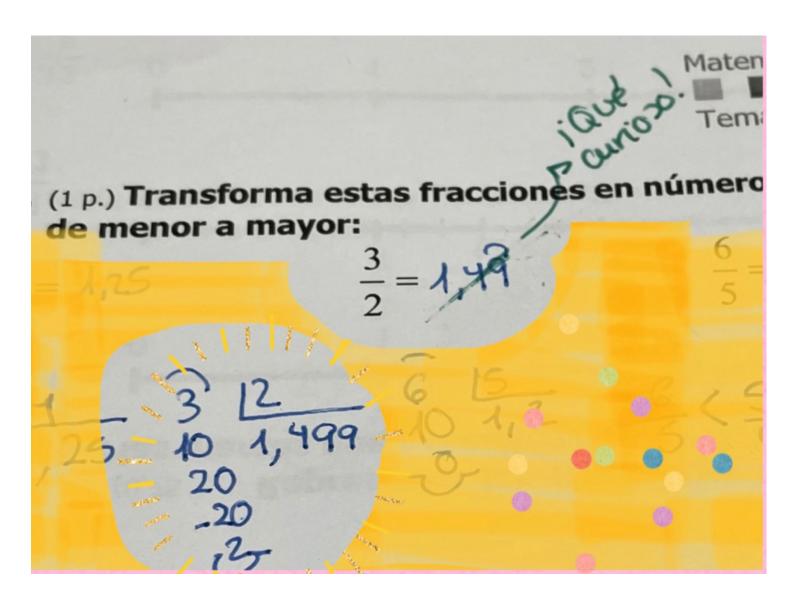
Fracciones y decimales

* Es importante manejar las dos expresiones, y pasar de una a otra, con soltura.

$$\begin{array}{lll} \circ & \frac{3}{4} = 0,75 & \circ & \frac{1}{3} = 0,333 \cdots \\ \circ & 0,2 = \frac{1}{5} & \circ & 1,5 = \frac{3}{2} \end{array}$$

- * Representar decimales y fracciones, mezclados, en la recta numérica, puede ser una buena forma de mostrar que son dos expresiones de un mismo concepto.
- * Un ejercicio que planteo en magisterio: Ordena de menor a mayor

$$2 + \frac{6}{7}$$
, $\frac{36}{11}$, $2 + \frac{2}{3}$, 0,11, $3 + \frac{6}{8}$, $\frac{4}{9}$, $\frac{27}{7}$, 0,77, 2,93, $\frac{3}{4}$



https://twitter.com/bblanc0/status/1363567110971133973?s=20

Referencias

- * Las imágenes de libros de texto usadas en estas transparencias corresponden a los proyectos:
 - Piensa Infinito, Editorial SM.
 - Pensar sin Límites, Editorial Polygon Education.