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Abstract
Modular origami is a branch of origami where one can build complex structures by interlocking 
elementary folded units (the modules). We will explore the possibilities of one of those modules, an 
show it can be used in a wide range of different constructions, sometimes by infringing the rules of 
pure origami (no glue, no scissors, no graduated ruler). 

Introduction
A lot of different units have have been proposed by several origamists. The double-sided concave 
hexagonal ring solid unit was introduced by Tomoko Fuse in her book « Unit Polyhedron 
Origami ».

She used it to build several archimedean solids (and one platonician solid : the dodecahedron).In all 
of those solids, the hexagonal module plays the role of the edge, hence only one size of unit is 
needed (all vertices in platonician and archimedean polyhedra are equals). 

We will show that we can play with colours to exhibit some properties of those solids (hamiltonian 
circuits) and that we can build a large set of related solids (fullerenes, nanotubes, Johnson solids). 

Then we will show that we can use units of different sizes to widen the set of buildable solids 
(Catalan polyhedra, Penrose tiling-like balls). 

Folding a hexagonal module
The table on page 2 shows how to fold an elementary unit. The relative sizes of the rectangle sides 
is not really important, we will see later that they are to be within certain limits. A standard ration is 
1:2, easy to obtain by cutting a standard square sheet of paper.

The module has two flaps and two pockets, that will be used to connect several modules together.

 (see  Illustration 1: Flaps and pockets) . Table 1: Joining
modules on page 3 shows how to link two or more 
modules together into a closed ring. Of course, you can 
link more than three modules : it's not rare to link five or 
six modules together without problems. 

Even if pure origami prohibits the use of glue, a little bit 
of stick glue can help avoiding the structure you build to 
fall apart when a lot of modules are already connected: it 
let the user concentrate on the geometry of his/her work. 

What can we build with such units ? Plasticity constraints 
make it difficult to build platonician solids, except the 
dodecahedron. But quite all the archimedean solids can be 

build (to be verified...). An illustrated  catalogue  of possibilities is detailed at chapter Objects you
can build on page 3. Construction is often easier when the modules are made longer, by increasing 
the ratio length:width of the initial rectangle. 

Illustration 1: Flaps and pockets



Begin with a rectangle Fold it twice in two Close it

Fold the corner at 45° Fold the bottom at 22,5° Idem on the other side

Unfold everything Raise the lower right crease... ...as in this picture

Same on the other side Mark the creases Mark the creases

Until you obtain this Fold in the middle Fold the left loose end

Like that Same on the right Fold the two upper triangles

18 steps for folding a module



Insert a flap in a pocket Insert the little triangle 
in the other part of the 
pocket.

Mark the creases 
firmly.

Continue with another 
module and close the 
ring. 

Table 1: Joining modules

Objects you can build

Platonician solids
As said above, physical constraints make it difficult, if not impossible, to build any of the regular 
solids except the dodecahedron. 

Illustration 2 and 3 show two versions of the dodecahedron, with different sizes for the edges. 

Archimedean solids
Here again, the only limit are the physical rules of the real world. One thing that makes modular 
origami interesting is how you can feel in your hands the physical constraints, when you try to 
assemble modules which don't want to meet each other !

I never studied rigorously which solid one can assemble or not. Illustrations 4 to 7 demonstrate that 



at least 4 of them are possible. Illustration 5 shows an interesting feature : the purple edges  are 
following a hamiltonian path on the surface of the rhombicosidodecahedron. Even if we know that 
every archimedean solid has a hamiltonian path, it is not easy to find. But once you got one, 
building the corresponding modular solid is quite easy, and give you an illustrative  mathematical 
model at no cost. 

Fullerenes
Since fullerenes are based on regular polygons (pentagons and hexagons), they are also candidates 
for a modular origami construction. If nanotubes are easy to build, a new physical reality imposes 
its law : gravity. Big models begin to be heavy, and can overcome the strength of the paper. A 
solution is either to make thinner edges, or to make smaller models. The second solution should be 
better, since the weight of an edge varies like the third power of its size. Another limiting factor is 
human : patience. But planning to build huge models can be the occasion to define a team work !

Illustration 6: Truncated octahedron

Illustration 7: Snub dodecahedron

Illustration 8: Fullerene C240
Illustration 9: A short nanotube



In general, it's not a good idea to build separately big parts of the model and join them together at 
the end : big parts are heavy, and the flaps are fragile. Trying to assemble big parts often results in 
damaging the flaps and pockets one try to assemble all at the same time. By experience, it's better to 
have one construction, where one add modules one by one. This implies to have clearly in mind the 
geometry of the object. Using different colours might help. 

Penrose-like tiling 
My first idea was to use hexagonal units to build planar Penrose tilings, which can be made with 
edges all of the same size. But, while making my first experiment, I realized that the structure I was 
building is not at all planar. This is due to the fact that both parts of an edge are not of the same size. 

But every structure that has a five-fold symmetry can be put on the faces of a dodecahedron to 
produce a spatial symmetric structure. I was then able to recycle my Penrose tiling into a quite 
complex three-dimensional object. 

The model in Illustration 12 is at the limit of heaviness 
problem : while it poses no problem during the 
construction (apart from patience), it is beginning to 
collapse under its own weight. 

Illustration 10: A simple Penrose-like  
structure. The five-fold motif is clearly  
visible. 

Illustration 11: A more complicated 
Penrose-like tiling : can you find the 
motif ? 

Illustration 13: A big Penrose-like tiling

Illustration 12: A four-fold motif on a 
cubic symmetry



Modules of different sizes

The geometry and measures of the module

The illustration above shows an unfolded unit. When folded, the unit has three important measures : 
a, b, and l/4.  When we work with equal units, we don't matter too much about those quantities, 
except for controlling the thickness of the edges (namely l/4). If we want to design and work with 
edges of different sizes, we have to  control those values. Since we want the units to join perfectly, 
we must maintain the same value of l/4, for each size of module: hence the length of modules will 
not change. The only thing we can modify then is h, the height of the rectangle. How a and b are 
related to h ?  Some elementary trigonometry is necessary : 

Following the same logic, it is easy to express b as a function of h and L : 

Illustration 14: Naming the creases and their measures and angles
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This last formula gives the minimal value of h, since b must be non-negative. 

Then if we want two different units of respective length a1 and a2 , such that a2=k a1

and a1 is known, we must set h2 to : 

Units of different sizes : application
The Catalan solids are the dual of the archimedean solids. All their faces are equal, but the length of 
their edges are different. As for the archimedean polyhedra, it is possible to build a large part of the 
Catalan solids set. 

Illustration 15: Kite hexecontahedron  And Illustration 16: Pentagonal hexecontahedron show two 
examples of modular structures build on this principle. The exact dimensions of the edges can be 
found in any good geometry book, or on the internet, and is left to the reader. 

One can also decide to build those polyhedra not by 
showing their edges, but different paths from one vertice 
to the “center” of the face (this center can be defined in 
different ways). This leads to still another rich variation, 
which is illustrated on Illustration 17: Pentagonal
hexecontahedron variation, based on the geometry of the 
pentagonal hexecontahedron. Note that this variation is 
also appliable to the archimedean solids, and since one can 
choose its own definition of the “center” of a face, it gives 
raise to an infinity of variations, which might be worth 
trying virtually before to begin folding. 

Conclusion
The hexagonal concave unit is an easy to fold easy to assemble modular origami unit, which allows 
to build sophisticated geometric structures, from standard polyhedra to more exotic ones. With a 
little patience, one can obtain real-world objects, lead tangible experiments at the fraction of the 
cost and work implied by standard model making, like 3D printing, for example.  It can be used in 
classrooms, since the need of a lot of modules can make the folding a group activity, and I think it's 
valuable for children to be able to conduct an experiment from the very beginning (imagine the 
structure), then the construction itself ( fold the paper) and the final result  (assemble the units). 
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Illustration 15: Kite hexecontahedron Illustration 16: Pentagonal  
hexecontahedron

Illustration 17: Pentagonal  
hexecontahedron variation
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