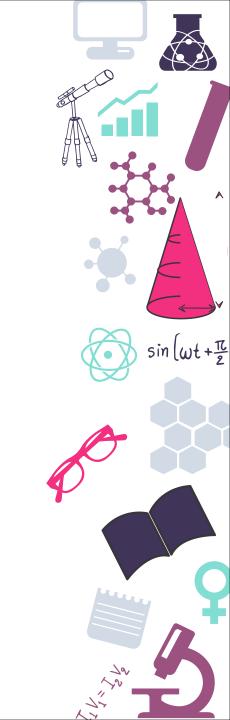
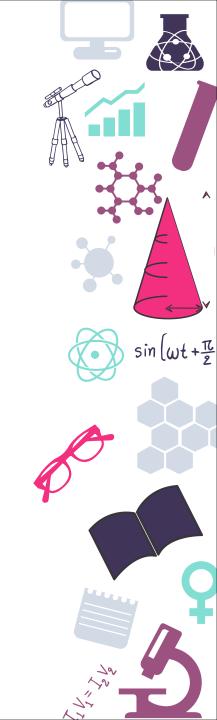


IMPRESIÓN 3D PARA LA CONSTRUCCIÓN DE PEQUEÑOS ROBOTS

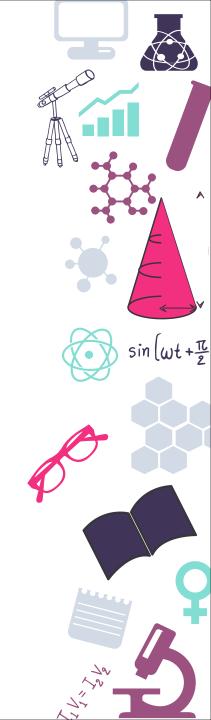



Introducción

Sobre el curso, sobre mi y sobre vosotros

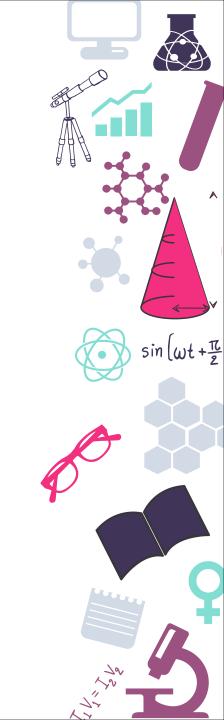
Sobre el curso

- ✓ Utilizar la impresora 3D de manera segura
- O Conocer el software de impresión y el proceso de impresión para trabajar de manera autónoma
- O Conocer el montaje del robot Simplibot y preparar el entorno de programación del mismo


¿Quien soy yo?

Héctor Alonso del Bosque

alonsodelbosque.hector@gmail.com

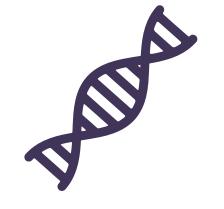

@hector6598

- → Técnico superior de telecomunicaciones
- → Técnico superior en administración de sistemas informáticos en red
- → 6 Años de experiencia como administrador de sistemas
- → 1 Año como especialista en hacking ético y ciberseguridad en Grupo CFI
- → 3 Años de experiencia como técnico electrónico en el campo de la movilidad eléctrica
- → Sobre todo ... FRIKI!

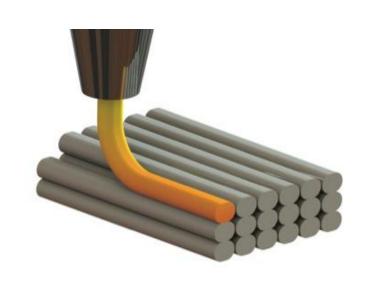
¿Y vosotros?

Fundamentos de la impresión 3D 🎺

Toma de contacto con el mundo de la impresión 3D

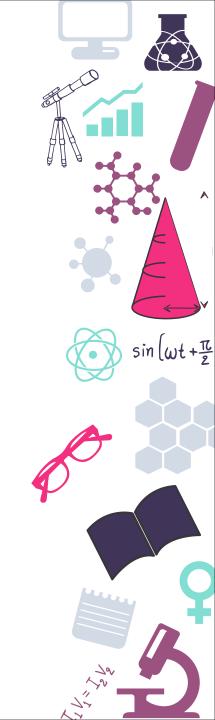

Un poco de historia...

2004 Adrian Bowyer impulsa el proyecto RepRap que crea la primera impresora de código abierto que democratiza estos procesos


^{*} Fuente de la imagen: https://es.digitaltrends.com/fotografia/historia-de-la-impresion-en-3d/

Tipos de Impresoras

Y sus características más importantes


FDM - Modelado por deposición fundida

Los materiales se depositan capa sobre capa

Impresión rápida y barata

El material inicial es sólido y se debe transformar para ser usado

Son las más comunes y baratas

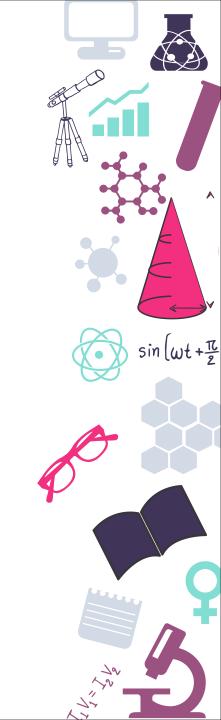
SLA - Estereolitografía

Las capas se curan mediante el uso de un láser

Usan polímeros líquidos que endurecen con la luz UV

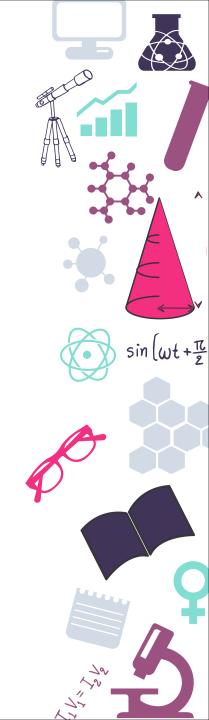
Mayor precisión de impresión

Mayor coste de las impresoras y materiales


DLP - Procesamiento digital de luz

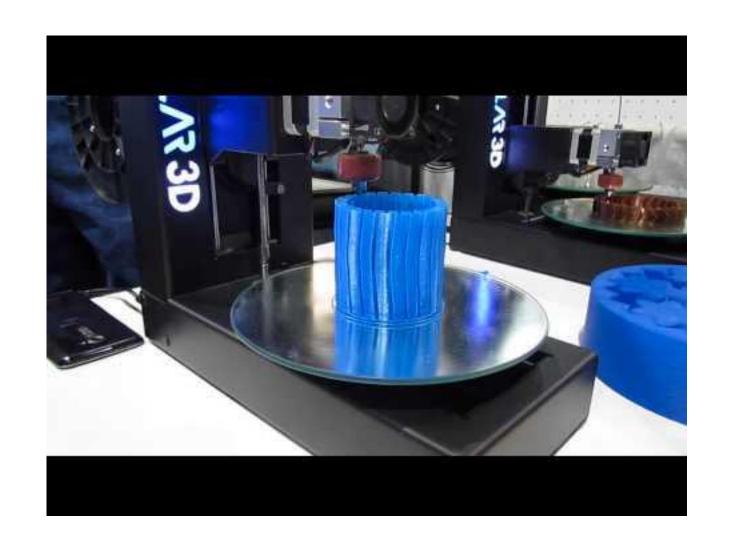
No usa luz UV necesariamente

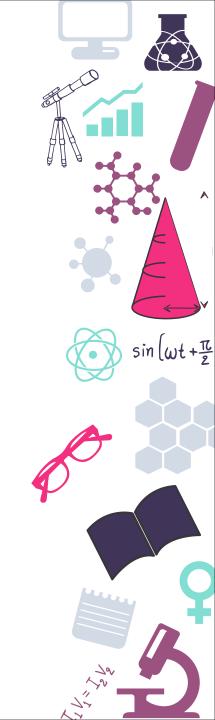
Menor precisión que las SLA/SLS


Fáciles de construir de manera casera

Impresión más sucia y materiales tóxicos

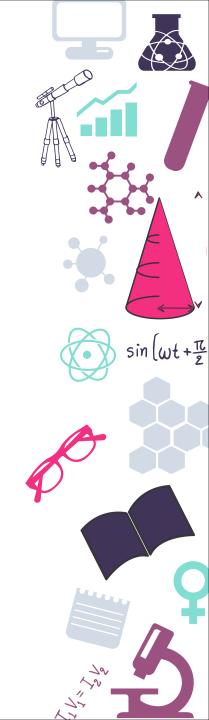
https://www.youtube.com/watch?v=vYrg8DnucBM




 $\sin\left(\omega t + \frac{\pi}{2}\right)$

TIPOS DE IMPRESORAS FDM

CARTESIANAS	POLARES	DELTA
Son las más comunes	Usan coordenadas polares	La base se mantiene fija
Se mueven los ejes XYZ	Base de impresión circular	Mayor velocidad de impresión
	CII CAIAI	Dificultad de calibrar



https://www.youtube.com/watch?v=gri16vi5D78

https://www.youtube.com/watch?v=uG-yoiFV85c

Partes de una impresora 3D

Para poder identificarlas y conocer su funcionamiento

Partes de una impresora 3D

Extrusor


Conjunto de Hotend, Nozzle, motores y engranajes que empujan el plástico y lo funden creando hilos para la impresión

Hotend

Contiene una resistencia, un sensor de temperatura y un disipador que funde el plástico de manera controlada

Nozzle

Es el punto por el que sale el material y puede intercambiarse para obtener diferentes medidas de plástico (0.4 / 0.6 / 0.8 ...)

Partes de una impresora 3D

Electronica

Consta de un controlador (Arduino) y una placa de potencia (Ramps) al que se le carga un software (Marlin) y se encarga de alimentar todo el sistema e interpretar las órdenes que le demos.

Base de impresión

Base sobre la que se imprime la pieza y que en ocasiones puede estar calefactada para una mejor adherencia de las piezas, en ese caso se suele llamar cama caliente.

Materiales

Tipos de plasticos, su presentación y usos

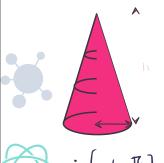
MATERIALES PARA FDM

Las presentaciones más comunes son:

BOBINA

Es la más común y se toma como estándar

Facilidad de uso y almacenaje



Pensado para grandes volumenes

Más limitado de colores

Necesita de extrusores especiales

https://www.voutube.com/watch?v=MJl26VLsM9U

MATERIALES PARA FDM

Los diámetros de los filamentos tomados como estándar en la impresión 3D:

1,75 mm

Uso más común en impresoras no profesionales

Mayor detalle en impresiones pequeñas

Pensado para impresiones más cortas

2,85 mm

Pensado en impresoras tipo bowden

Para impresiones largas, de incluso días

Mejor bobinado

PLA - Poliádo Láctico

Material que proviene de materias primas naturales como el maíz o azúcar de caña

VENTAJAS

Biodegradable

Facilidad de

impresión

Menor emisión de

gases al imprimir

Poco Warping

INCONVENIENTES

Material frágil

Le afecta la humedad

y los rayos solares

Dificil de mecanizar /

tratar

PARÁMETROS

Impresión:

195°C a 210°C

generalmente

Sin cama

caliente o a baja

temperatura

ABS - Acrilonitrilo Butadieno Estireno

Derivado del petróleo y muy utilizado en procesos industriales

VENTAJAS

químicos

Facilidad de mecanizado
Dureza y resistencia mecánica
Resistente a la intemperie y

INCONVENIENTES

Más difícil de imprimir
Mayor efecto warping
Emisiones de partículas durante la impresión

PARÁMETROS

Impresión:
A partir de 235°C

Cama caliente a

más de 55

grados

Sin ventilador de capa

PET - Tereftalato de Polietileno

Es un poliéster derivado del petróleo muy utilizado en la industria alimentaria y cosmética

VENTAJAS

100% Reciclable

Facilidad de

impresión

Poco Warping

Baja absorción de

humedad

Resistencia al

exterior

INCONVENIENTES

No es biodegradable

Partículas emitidas al

imprimir

Se reblandece a partir

de los 70°C

PARÁMETROS

Impresión:

230°C a 250°C

Sin cama

caliente o a baja

temperatura

TPE - Elastómero termoplástico

Se trata de una combinación de un termoplástico con caucho

VENTAJAS

100% Reciclable
Suavidad al tacto
Elasticidad y
resistencia a
impactos

INCONVENIENTES

Difícil de imprimir y
necesidad de
extrusores especiales
No es mecanizable
Pérdida de elasticidad
con el tiempo

PARÁMETROS

Impresión: Entre 195°C y

220°C

Sin cama
caliente o a baja
temperatura

OTROS MATERIALES

- Alimentos
- Madera / Fibra de Carbono / Metales

https://www.youtube.com/watch?v=eP-wEx6F_kA

https://www.youtube.com/watch?v=2JdWusGeIgw

https://www.youtube.com/watch?v=cSdWx1JUAtE

sin (wt+#)

Aplicaciones y usos

Usos de la impresión 3D en el día a día

Prototipado de piezas

Reparación de otros elementos

Fabricación de otras impresoras

Fabricación de alimentos

Creación de prótesis

Apoyo en la medicina

https://ayudame3d.org/

#chemobox

https://www.myminifactory.com/es/category/ikea

La impresión 3D en el aula

Beneficios y campos en los que puede suponer un apoyo la impresión 3D en el aula

Promueven la creatividad

Al poder diseñar sus propios modelos además de modificar los ya existentes

Refuerzan los conocimientos de otras asignaturas

Pueden usarse para por ejemplo tener modelos de esculturas que ayuden a memorizar datos de arte

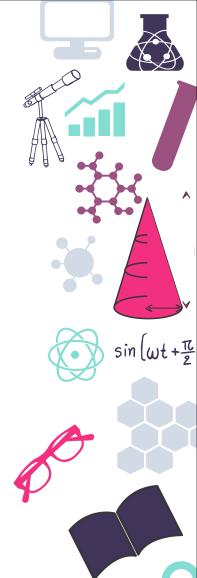
Ayudan a la resolución de problemas

Los procesos de impresión llevan una lógica que ayudan a resolver problemas durante los mismos

Ponen más en contacto la tecnología en el aula

Refuerzan las metodologías STEM de enseñanza dentro del aula

https://www.youtube.com/watch?v=lS0BIhAoWwU



https://www.youtube.com/watch?v=tfcfRM5g86U

Medidas de seguridad necesarias

A pesar de la simplicidad aparente de estas máquinas es necesario tener cuidado durante su uso para evitar problemas

Posibles riesgos

Partes móviles Emisión de gases Focos de incendios Quemaduras Riesgo eléctrico

Precauciones que se deben tomar

Mantenerse en lugares ventilados

Evitar el uso de materiales tóxicos

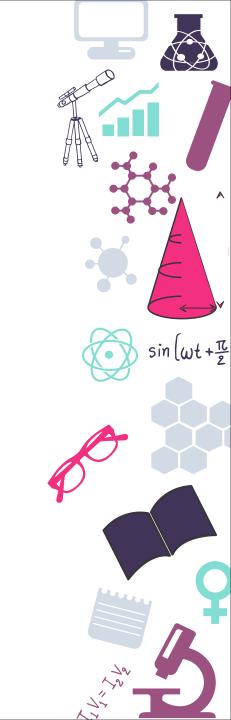
Uso de aislamiento eléctrico

Uso de guantes durante su manipulación y herramientas

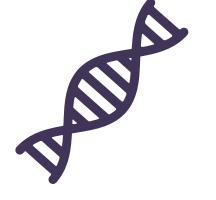
específicas

Ubicación libre de elementos inflamables

Revisión y mantenimiento periódico de la máquina


Cerrar y aislar el área de impresión

Manipular la máquina solo en estado de reposo


Proceso de Impresión 3D

Build better presentations in less time

Obtener los modelos 3D

Una de las ventajas de esta tecnología es la gran comunidad que existe y que genera modelos para ser usados

Diseño de modelos propios

Tinkercad

www.tinkercad.com

Propiedad de AutoCad

De uso libre y gratuito

Galería y repositorio de piezas

Facilidad de uso

Útil en diseños simples

Posibilidad de proyectos completos

Descarga de modelos

Existen multitud de repositorios de piezas tanto gratuitos como de pago por eso es necesario vigilar los derechos de propiedad intelectual.

Algunos de los más conocidos:

Thingiverse
My mini Factory
You Magine

https://www.thingiverse.com/

https://www.myminifactory.com

https://www.youmagine.com