
IISSSSUUEE 1199 -- DDEECC 22001133

AA MMaaggaazziinnee ffoorr RRaassppbbeerrrryy PPii UUsseerrss

hhttttpp::////wwwwww..tthheemmaaggppii..ccoommRRaassppbbeerrrryy PPii iiss aa ttrraaddeemmaarrkk ooff TThhee RRaassppbbeerrrryy PPii FFoouunnddaattiioonn..
TThhiiss mmaaggaazziinnee wwaass ccrreeaatteedd uussiinngg aa RRaassppbbeerrrryy PPii ccoommppuutteerr..

GGeett pprriinntteedd ccooppiieess

aatt tthheemmaaggppii..ccoomm

EEnnvviirroonnmmeennttaall MMoonniittoorr

XXLLooBBoorrgg PPaaiinntt BBrruusshh

GGPPIIOO LLCCDD SSccrreeeenn

RReemmoottee SSeennssiinngg

PPii SSttoorree RReevviieeww

CCaattcchh UUpp TTVV

SSoonniiccPPii

QQuuaaddccoopptteerr

LLiifftt OOffff

Win a
RaspberryPi
16GB SD card
breadboard&

more

Ash Stone - Chief Editor / Administration / Layout

W.H. Bell - Issue Editor / Layout / Administration

Bryan Butler - Page Design / Graphics

Ian McAlpine - Layout / Proof Reading

Matt Judge - Website / Administration

Aaron Shaw - Layout / Proof Reading

Colin Deady - Layout / Proof Reading

The MagPi Team

Claire Price - Layout / Proof Reading

Matt Weaver - Layout

Amy-Clare Martin - Layout

Gerry Fillery - Proof Reading / Testing

Paul Carpenter - Tester

Neil Matthews - Tester / Proof Reading

Nigel Curtis - Proof Reading

2

19

Welcome to Issue 1 9 of The MagPi magazine.

This year has flown by and we are back with our Christmas issue once again! Is Santa bringing you any
Raspberry Pi goodies this Christmas? If so we have plenty of great articles to help you put this clever
computer straight to good use.

Are you bored of having your presents del ivered by reindeer? If you fancy a change, why not have your
own Pi-powered quadcopter air drop them in? Andy Baker begins his series on bui lding this flying
machine covering in this issue the parts required, their function and discusses some of the coding used
for l i ft off. . . . no, it’s not powered by Christmas spirit!

I f you are too busy attending Christmas parties and are missing your favourite soaps, never fear, we
have you covered. Geoff has produced a great article on OpenELEC, bringing you catch up TV on your
Raspberry Pi so you never have to miss an episode again! Claire Price continues the festive spirit with
a fantastic article on Sonic Pi which wil l have your Raspberry Pi singing along with a rendition of Good
King Wenceslas.

The news in the UK is currently fi l led with stories of electricity firms putting up their prices this winter. I f
you want to be savvy with your heating and electricity bi l ls, without turning off the tree l ights and turning
the thermostat down, why not cast your eye over Pierre’s article on environmental monitoring.
Alternatively, to warm you up we return to Project Curacao looking at the environmental subsystem
used in this remote sensing project.

I f that’s not enough to keep you busy over the hol idays, why not paint an electronic masterpiece with
XLoBorg? Andy Wilson looks at scrol l ing an RSS feed on an LCD via GPIO plus we pay a visit to the Pi
Store. Final ly, find out about events in your area and PC Supplies are yet again generously offering
Raspberry Pi goodies in their monthly competition.

We are also pleased to be able to announce that
printed copies of the magazine are now available
from various retai lers l isted at www.themagpi.com.

The MagPi wil l be taking a short break over
Christmas and the first issue of 201 4 wil l be
published at the start of February.

Merry Christmas and best wishes for 201 4.
Chief Editor of The MagPi

http://www.themagpi.com

3

4 QUADCOPTER
Part 1 : An introduction to bui lding and control l ing a quadcopter with the Raspberry Pi

1 0
Data logging with the Raspberry Pi

Scrol l ing an RSS feed on an AndyPi LCD via GPIO

1 8
Buttons and switches with the Raspberry Pi Part 3

22
Painting with the XLoBorg accelerometer and magnetometer from PiBorg

28
CATCH-UP TV
Avoid missing your favourite programme by using OpenELEC to watch TV

34 THE PI STORE
A look at the diverse range of applications and games

ENVIRONMENTAL MONITOR

1 4

PROJECT CURACAO: REMOTE SENSOR MONITORING IN THE CARIBBEAN

ANDYPI

Part 2: The environmental subsystem
1 6

PHYSICAL COMPUTING

PIBRUSH

38
Win a Raspberry Pi Model B, breadboard, 1 6GB NOOBS SD card, GPIO Cobbler kit and accessories
COMPETITION

39
Stevenage UK, Winchester UK, Nottingham UK, Paignton UK, Helsingborg Sweden
THIS MONTH'S EVENTS GUIDE

44
Have your say about The MagPi
FEEDBACK

Learning to program with Sonic Pi
SONIC PI AT CHRISTMAS40

http://www.themagpi.com

ContentsContentsContents

http://www.themagpi.com

4

SKILL LEVEL : ADVANCED

Andy Baker

Guest Writer

Building an airborne autobot

A quadcopter is a flying machine with four propel lers

control led either autonomously (programmed with a

fixed fl ight routine) or via a remote control.

This first article (hopeful ly of a series) covers a brief

overview of how they work, how to bui ld one

control led by a Raspberry Pi, information about

where to get al l the bits you need and how to bolt

them all together physical ly, electronical ly and in

software. The result should be a quadcopter which

can take-off, hover and land autonomously (and with

care!)

Future articles wil l cover more detai ls on testing and

tuning this basic quad including code enhancements

to al low lateral movement, a Raspberry Pi remote

control, and perhaps future developments covering

GPS tracking.

Parts of a quadcopter

First a quick breakdown of al l the parts that make up

a quadcopter.

There are four propel ler blades. Two of the four are

designed to rotate clock-wise; the other two anti-

clockwise. Blades which are designed to move the

same way are placed diagonal ly opposite on the

frame. Organising the blades l ike this helps stop the

quadcopter spinning in the air. By applying different

power to each propel ler, and hence different amounts

of l i ft to corners of the quadcopter, i t is possible to not

only get a quadcopter to take-off, hover and land but

also by ti l ting it, move horizontal ly and turn corners.

Each propel ler has its own DC brushless motor.

These motors can be wired to rotate clockwise or

anti-clockwise to match the propel ler connected to

them. The motor has coi ls in three groups around the

body (cal led the stator) and groups of magnets

attached to the propel lor shaft (cal led the rotor) . To

move the blades, power is applied to one group of the

coi ls and the rotor magnets are attracted to that coi l ,

moving round. I f that coi l is then turned off and the

next one powered up, the rotor moves around to the

next coi l . Repeating this around the three coi ls in

sequence results in the motor rototating; the faster

you swap between the three powered coi ls the faster

the motor rotates. This makes the motor suitable for

‘digital ’ control – the direction and speed of

movement of the propel ler blade exactly matches the

sequence and rate power pulses are applied to the

coi ls. These motors take a lot of power to spin the

propel ler blades fast enough to force enough air

down to make the quadcopter take-off – far more

power than a Raspberry Pi can provide – so an

Electronic Speed Control ler (ESC) bridges that gap.

I t translates between a Pulse Width Modulation

(PWM) control signal from the Raspberry Pi and

converts it to three high-current signals, one for each

5

coi l of the motors. They are the small white objects

velcro’d under the arms of the quadcopter.

Next there are sensors attached to the breadboard on

the shelf below the Raspberry Pi; these provide

information to the Raspberry Pi about rocking and

rol l ing in three dimensions from a gyroscope, plus

information about acceleration forward, backwards,

left, right, up and down. The sensors connect to the

Raspberry Pi GPIO I2C pins.

In the circuit diagram you can see I am considering

adding a beeper, so I can hear what the quadcopter

thinks it’s doing.

The power for everything comes from a single l i thium

polymer (LiPo) battery which provides 1 1 .1 V up to a

peak current of 1 00A, with the ful l-charge of 3300

mAh thus supplying 3.3A for an hour or 1 00A for two

minutes or anywhere in between. This is a powerful

and dangerous beast, yet it only weighs 250 grams.

I t requires a special charger – if not used, a LiPo

battery can easi ly become a LiPo bomb – beware.

There is a regulator on the breadboard to take power

from the battery and produce the 5V for the

Raspberry Pi and also provide a degree of protection

from the vast power surges the motors draw from the

battery.

That just leaves the beating heart of the quadcopter

itself; the Raspberry Pi. Using Python code it reads

the sensors, compares them to a desired action (for

example take-off, hover, land) set either in code or

from a remote control, converts the difference

between what the quad is doing (from the sensors)

and what it should be doing (from the code or remote

control) and changes the power to each of the

motors individual ly so that the desired action and

sensor outputs match.

Creating your quadcopter

First and foremost, flying machines and boats are

female and they have names; mine is cal led Phoebe

(“Fee-Bee”). Choose a name for yours and treat her

well , and the chances are she’ l l reciprocate!

Phoebe’s body, arms, legs, blades, motors, ESCs

and batteries are from kits. Total cost is about £250

– together with a Raspberry Pi, and other

accoutrements, the total cost is perhaps £300 –

£350. Not cheap for something which certainly at the

start has a preference to crash rather than fly!

A complete bi l l of materials (BOM) is avai lable at

http://blog.pistuffing.co.uk/?p=1 1 43

I ’ve actual ly upgraded my motors to higher power,

l ighter weight varieties but this is absolutely not

necessary – the equipment provided by the kits is

excel lent. Upgrading components for weight

reduction / power efficiency and strength is definitely

an afterthought once the basics are working.

The Raspberry Pi is a model A, chosen for lower

weight and lower power consumption; these are

factors reflected through other pieces of the design. I

have removed the audio and video outputs and use a

micro-SD card adapter from the guys at Pimoroni – al l

in the name of weight saving.

The Raspberry Pi case is a variant of the Pimoroni

PiBow model B case with a couple of levels removed

and some holes sealed for reduced weight and

increased strength (protection from crashes!) . I ’ve

posted the design for these at

http://blog.pistuffing.co.uk/wp-content/uploads/201 3/

1 0/Pibow002-AB5.pdf. Phenoptix do a great job of

laser cutting 3mm acryl ic at a very reasonable price.

http://blog.pistuffing.co.uk/?p=1143
http://blog.pistuffing.co.uk/wp-content/uploads/2013/10/Pibow002-AB5.pdf

6

Talking to Phoebe

Whether Phoebe is autonomous or remote control led

someone needs to talk to her to tel l her what to do.

To that end, Phoebe runs a wireless access point

(WAP) so another computer can join her private

network and either SSH in or provide remote control

commands. You can see how I did this at

http://blog.pistuffing.co.uk/?p=594.

For initial testing the WAP function isn’t necessary,

any household wireless network wil l do, but as your

quadcopter comes to l ife you wil l want to be doing

your testing away from animals, chi ldren and other

valuables you don’t want damaged (l ike yourself) .

Having a WAP means you can take the testing out

into the garden or local park or field.

Presenting Phoebe’s Python code

The final step is obviously the most important; once

you have a physical quadcopter with associated

blades, motors, ESCs, power and circuitry, we use

Python code to glue al l the pieces together. I ’m not

going to go into this blow by blow here as the code is

avai lable at https://github.com/PiStuffing/Quadcopter

and it should be self-documenting. There are more

l ines of explanatory comments than there are l ines of

code actual ly doing something constructive!

The I2C class provides a programming interface to

read and write data from the sensors. Bui lt on that,

the MPU6050 class configures the sensors and then

provides API access to reading the data and

converting the values from the sensor into meaningful

values humans would understand (l ike degrees/sec

for rotation or metres/sec2 for acceleration).

The QUADBLADE class handles the PWM for each

blade handling initial ization and setting the PWM data

to control the propel ler blade spin speeds. The PID

class is the j igsaw glue and the core of the

development and testing. I t is the understanding of

this which makes configuring a quadcopter both

exciting and scary! I t is worth an article in its own

right – for now there is a brief overview of what they

do and how at the end.

There are uti l i ty functions for processing the startup

command line parameters, signal handl ing (the panic

button Ctrl-C) and some shutdown code.

Last, but not least, there is the big “whi le

keep_looping:” loop which checks on what it should

be doing (take-off, hover, land, etc), reads the

sensors, runs the PIDs, updates the PWMs and

returns to the start one hundred times a second!

PID

The PID (Proportional, Integral, Differential) class is a

relatively small , simple piece of code used to achieve

quite a complex task. I t is fed a “target” value and an

“input” value. The difference between these is the

“error”. The PID processes this “error” and produces

an “output” which aims to shrink the difference

between the “target” and “input” to zero. I t does this

repeatedly, constantly updating the “output”, yet

without any idea of what “input”, “output” or “target”

actual ly mean in its real world context as the core of a

quadcopter: weight, gravity, wind strength, RC

commands, location, momentum, speed and all the

other factors which are critical to quadcopters.

In the context of a quadcopter, “target” is a fl ight

command (hover, take-off, land, move forwards),

“input” is sensor data and “output” is the PWM pulse

size for the motors.

Phoebe has 4 PIDs running currently – pitch, rol l , yaw

and vertical speed – these are the bare minimum

needed for an orderly takeoff, hover and landing.

The PID's magic is that it does not contain any

complex calculations connecting power, weight,

blade spin rates, gravity, wind-speed, imbalanced

frame, poor center of gravity or the many other

https://github.com/PiStuffing/Quadcopter
http://blog.pistuffing.co.uk/?p=594

7

factors that perturb the perfect fl ight modelled by a

pure mathematical equation. Instead it does this by

repeated, rapid re-estimation of what the current best

guess “output” must be based only on the “target”

and the “input”.

The “P” of PID stands for proportional – each time the

PID is cal led its “output” is just some factor times the

“error” – in a quadcopter context, this corrects

immediate problems and is the direct approach to

keeping the absolute “error” to zero.

The “I” of PID stands for integral – each time the PID

is cal led the “error” is added to a grand total of errors

to produce an output with the intent that over time,

the total “error” remains at zero – in a quadcopter

context, this aims to produce long term stabi l i ty by

dealing with problems like imbalance in the physical

frame, motor and blade power plus wind.

The “D” of PID stands for differential – each time the

PID is cal led the difference in error since last time is

used to generate the output – if the “error” is worse

than last time, the PID “D” output is higher. This aims

to produce a predictive approach to error correction.

The results of al l three are added together to give an

overal l output and then, depending on the purpose of

the PID, applied to each of the blades appropriately.

I t sounds l ike magic.. . and to some extent it is! Every

PID has three configurable gain factors configured for

it, one each for “P”, “I” and “D”. So in my case I have

twelve different gain factors. These are magic

numbers, which if too small do nothing, if too large

cause chaos and if applied wrongly cause

catastrophe. My next article wil l cover this in much

more detai l , both how they work and how to tune the

gains. In the meantime, use the bi l l of materials on

page 5 and get on with bui lding your own quadcopter.

The PID gains in the code I ’ve supplied should be a

reasonable starting point for yours.

Flying Phoebe

At the moment it is simple but dangerous! Put

Phoebe on the ground, place a flat surface across her

propel ler tips, put a spirit level on that surface and

make sure she’s on absolute horizontal by putting

padding under her feet – this is absolutely critical i f

you don’t want her to drift in fl ight – we’ l l fix this in

another article with some more PIDs.

Connect the LiPo battery. The ESCs wil l start

beeping loudly – ignore them.

Wait unti l the Wifi dongle starts to flash – that means

Phoebe’s WAP is working.

Connect via SSH / rlogin from a client such as

another Raspberry Pi, iPad etc. which you have

joined to Phoebe’s network.

Use the cd command to change to the directory

where you placed Phoebe’s code. Then enter:

sudo python . /phoebe. py -c

sudo python . /phoebe. py -c -t 550 -v

-c calibrates the sensors to the flat surface she’s on

-t 550 sets up the blades to just under take-off

speed

-v runs the video camera while she’s in fl ight.

There are other options. You can find them by

entering:

sudo python . /phoebe. py

Enjoy, but be careful .

http://shop.pimoroni.com

www.pibot.org

1 0

SKILL LEVEL : INTERMEDIATE

Pierre Freyermuth

Guest Writer

ENVIRONMENTAL MONITOR

Using the BMP085 to log
temperature and pressure data

Data logging systems are often used in industry to

al low analysis after data has been read and for

monitoring. Studying col lected data, which could be

a large data sample, leads to a better understanding

of the monitored system behaviour. The Raspberry

Pi provides an affordable, accessible and low power

consumption solution that can log, present and

upload data. For example, a Raspberry Pi could be

used to monitor the energy consumption of a heating

system in a house.

In this article series I wi l l present an independent data

logging system that is assembled from several

pieces. The components of the system could be

modified for other applications. This series uses the

Raspbian Raspberry Pi operating system, together

with the Java programming language.

Base station requirements

The goal for the project is to run day and night without

interruption. Therefore, particular attention needs to

be taken when choosing the power supply. I t should

be efficient and rel iable. I f only a few low power

consumption sensors are connected, a mobile phone

charger is probably enough. I t is up to you to decide if

a screen, keyboard, mouse or remote access is

needed to interact with the Raspberry Pi. I chose to

record al l of the data onto the SD card. However, the

data could be written to a USB hard drive connected

through a powered USB hub, or to a network

mounted fi le system, or buffered local ly and then

uploaded. Writing al l of the data al lows a complete

analysis afterwards and reduces the write access to

the storage media in comparison to a rotating buffer.

Recording sensor data for one year could represent

hundreds of megabytes of data. I f a log of data

needs to be written then either a hard disk drive or

network mounted fi le system may be needed.

Raspbian is a real ly convenient operating system.

The default image now includes the Oracle Java

virtual machine, which is very efficient. The default

Raspbian image also includes system drivers for the

buses (I2C, SPI, UART) avai lable via the GPIO pins.

To instal l Raspbian on a SD card, fol low the official

tutorials at http://www.raspberrypi.org/downloads.

The buses avai lable on the Raspberry Pi GPIO can

be control led using the Pi4J Java library. This l ibrary

is discussed later in this article. For those unfamil iar

with Java, the Cup of Java MagPi series provides a

basic introduction in Issues 1 4 and 1 7.

Connecting the BMP085

The BMP085 is a very precise and affordable solution

to measure temperature and air pressure. I t can be

ordered from http://www.adafruit.com or from one of

their distributors. I t usual ly comes mounted on a PCB

board that can be connected directly to the

http://www.raspberrypi.org/downloads
http://www.adafruit.com

1 1

Raspberry Pi I2C bus.

Before the BMP085 can be used the i2c kernel

module needs to be enabled. From the command

line, enter:

cd /etc

sudo nano modprobe.d/raspi-blacklist.conf

Look for the entry blacklist i2c-bcm2708 and add

a hash ‘#’ at the beginning of the l ine so it becomes

#blacklist i2c-bcm2708. Press <Ctrl>+<X> then

press <Y> and <Enter> to save and exit.

Next edit the modules fi le. From the command line,

enter:

sudo nano modules

Add i2c-dev on a new line. Press <Ctrl>+<X> then

press <Y> and <Enter> to save and exit.

Reboot the Raspberry Pi, open a terminal window

and enter:

sudo i2cdetect -y 1

NOTE: Use 0 instead of 1 for the bus number in the

above command if you have a revision 1 Raspberry

Pi. The revision 1 Pi does not have any mounting

holes on the PCB; newer revisions have 2 mounting

holes.

The response should show 77 in the address l ist.

More information is provided in the Adafruit tutorial at

http://goo.gl/PDrZGL.

Java data logging program

Oracle has provided a Java virtual machine that has

been optimised for the Raspberry Pi. Check your

Java version by typing:

java -version

The response should be 1 .7.0_40 or higher.

To get the source code needed for this project fol low

the instructions given at http://goo.gl/KqPH24.

to check out . The source code must be customised

according the sensors connected and the onl ine

server used. Detai ls of the Pi4J Java library are given

at http://pi4j .com.

The Pi4J l ibrary provides direct access to the SPI

bus and a lot of GPIO faci l i ties.

Goals of the program
• At start-up, configure the communications for the

probes and then the probes themselves.

• At start-up, load the previous recorded data from

log fi les.

• Retrieve data from probes and record them to a

plain text fi le on the SD card.

• Perform averaging with different time scales, in

order to present historical data in a convenient way.

• Upload averaged data to a web server using FTP to

provide access via the internet.

• Use a chart as a graphical user interface, to make

local visual isation easy.

By recording al l of the data, it is then possible to

change the analysis method or analyse the ful l data.

http://goo.gl/PDrZGL
http://goo.gl/KqPH24
http://pi4j.com

1 2

Structure

Probes connected to the Raspberry Pi can provide several values that may be independent. The chosen solution

consists of an abstract class for probes which must be implemented for each sensor connected to the system. A

probe implementation of this class must provide one or several DataChannel objects, which represent the data

model. In terms of a model-view-control ler pattern, the ProbeManager class can be seen as the control ler,

customising the view.

The DataChannel class includes activities that are common for each type of data - it loads previous data from the

log fi le when it is instantiated, logs new data and performs averaging. The different implementations of

AbstractProbe include functional ity specific to a given type of sensor. Each derived class should configure the

sensor, process or convert data and then add them to the right DataChannel object.

Interfacing with the BMP085

The class BMP085probe extends AbstractProbe and provides access to DataChannel objects. There are two

objects: one for temperature and a second one for air pressure. The two arguments of the DataChannel

constructor are the name for the display and the name of the data fi le.

private DataChannel pressureChannel = new DataChannel("Atmospheric Pressure",

"Atmospheric_Pressure");

private DataChannel temperatureChannel = new DataChannel("Room Temperature", "Room_Temperature");

The BMP085probe class overides the abstract method that provides access to the DataChannel objects :

@Override

public DataChannel[] getChannels() {

return new DataChannel[]{pressureChannel, temperatureChannel};

}

The I2CBus object from the Pi4J l ibrary is passed to the BMP085 constructor, since it can be several peripherals

on the same I2C bus. With this bus, we can configure our I2C device. The BMP085 has the address 0×77.

public static final int BMP085_I2C_ADDR = 0x77;

private I2CDevice bmp085device;

public BMP085probe(I2CBus bus) throws IOException {

bmp085device = bus.getDevice(BMP085_I2C_ADDR);

readCalibrationData();

DataReaderThread dataReaderThread = new DataReaderThread();

dataReaderThread.start();

}

The dataReaderThread object is used to send a request for temperature and pressure information. Then the

thread reads two bytes of raw temperature information and three bytes of raw pressure information.

bmp085device.write(CONTROL, READTEMPCMD); //Send read temperature command

sleep(50); //wait the convertion time

rawTemperature = readU16(DATA_REG); //retrieve the 2 bytes

bmp085device.write(CONTROL, (byte) READPRESSURECMD); //Send read pressure command

sleep(50); //wait the convertion time

msb = readU8(DATA_REG); //retrieve the 3 bytes

1 3

lsb = readU8(DATA_REG+1);

xlsb = readU8(DATA_REG+2);

rawPressure = ((msb << 16) + (lsb << 8) + xlsb) >> (8-OSS); //make raw pressure integer

This raw data can be converted into units of Pascals and Degrees by fol lowing the BMP085 datasheet at

http://goo.gl/CborFs and using the calibration values previously read. Java does not support native unsigned

interger types. I t is therefore more convenient to replace bit shifting with division and multipl ication.

double temperature = 0.0;

double pressure = 0.0;

double x1 = ((rawTemperature - cal_AC6) * cal_AC5) / 32768;

double x2 = (cal_MC *2048) / (x1 + cal_MD);

double b5 = x1 + x2;

temperature = ((b5 + 8) / 16) / 10.0;

double b6 = b5 - 4000;

x1 = (cal_B2 * (b6 * b6 / 4096)) / 2048;

x2 = cal_AC2 * b6 / 2048;

double x3 = x1 + x2;

double b3 = (((cal_AC1 * 4 + x3) * Math.pow(2, OSS))+2) / 4;

x1 = cal_AC3 * b6 / 8192;

x2 = (cal_B1 * (b6 * b6 / 4096)) / 65536;

x3 = ((x1 + x2) + 2) / 4;

double b4 = cal_AC4 * (x3 + 32768) / 32768;

double b7 = (rawPressure - b3) * (50000 / Math.pow(2, OSS));

if (b7 < 0x80000000) pressure = (b7 * 2) / b4;

else pressure = (b7 / b4) * 2;

x1 = (pressure / 256) * (pressure / 256);

x1 = (x1 * 3038) / 65536;

x2 = (-7375 * pressure) / 65536;

pressure = pressure + (x1 + x2 + 3791) / 16;

This sensor can provide a high rate of data. To enhance the precision, a thread can take 5 data points, average

them and add this new measurement every second to the dataChannel object.

To add the BMP085 to the final program, in the main class of the program we get an instance of the Pi4J I2CBus,

instantiate the BMP085probe and add it to the ProbeManager.

private void initI2CandBMP085probe() {

try {

final I2CBus bus = I2CFactory.getInstance(I2CBus.BUS_1); //Change to BUS_0 for Rev 1 boards.

bmp085Probe = new BMP085probe(bus);

probeManager.addProbe(bmp085Probe);

} catch (IOException e) {

e.printStackTrace();

}

}

Now the two DataChannel temperature and air pressure values can be acquired, logged, and displayed as a

chart.

In the next article, additional instructions wil l be given to export the data and setup a web page to view the data.

Unti l then, try putting the code together and try it out with the hardware configuration described.

http://goo.gl/CborFs

14

SKILL LEVEL : INTERMEDIATE

Andrew Wilson

AndyPi

PYTHON CONTROLLED LCD
Get yours from http://andypi.co.uk/

Scrolling an RSS feed on an
AndyPi HD44780 LCD via GPIO

For many Raspberry Pi projects, providing visual

output is important, but a standard HDMI screen

is either too large or unnecessary. For example,

you may have a temperature sensor and only

need to display the current value, or you may

want to display an internet radio station name of

a "headless" Raspberry Pi. Alternatively, you

could have a standalone display for your latest

tweets.

This tutorial explains how you can connect an

inexpensive HD44780 type 1 6 character 2 l ine

LCD (Liquid Crystal Display) to your Raspberry

Pi 's GPIO port and display the time and the latest

news headline from the BBC RSS feed.

The AndyPi website (http://andypi.co.uk/) also

contains video and written tutorials on how you

can use this LCD to display media information

such as mp3 titles using RaspBMC or RaspyFi.

Hardware set-up

A brief description of pin connections is

described here but a ful l l ist of parts and detai led

construction information is avai lable at

http://andypi.co.uk/. You can buy the parts

individual ly and make your own, or you can

purchase a complete, pre-soldered kit of parts

from AndyPi for £1 2.99 or + P&P (EU only) .

On the LCD, wire a 1 0K potentiometer (for

contrast control) between VSS (1) and VO (3),

connect K (1 6) to RW (5), and connect K (1 6) to

VSS (1) . LCD to GPIO connections as fol lows:

Software set-up

Starting with the latest version of Raspbian,

make sure your system is up to date, and instal l

some python related tools:

sudo apt-get update

sudo apt-get install -y python-dev \

python-setuptools python-pip

We need to instal l some python modules;

wiringpi for GPIO control; feedparser to read the

RSS feed, and the processing module to al low us

to use threading (explained later) :

LCD pin LCD pin name GPIO (P1) pin
1 VSS GND
2 VDD +5v

1 5 A 1 8

1 4 D7 1 4

1 3 D6 23

1 2 24

08

1 1 D4 25

6 E

D5

4 RS 07

http://andypi.co.uk/
http://andypi.co.uk/
http://andypi.co.uk/
http://andypi.co.uk/

Get ful l detai ls of al l functions of the AndyPi_LCD

class and buy the kit from http://andypi.co.uk
This article is sponsored by:

15

sudo pip install feedparser \

processing wiringpi

Final ly, download the AndyPi LCD python class:

sudo wget http: //andypi. co. uk/downloads/

AndyPi_LCD. py

Python script

The AndyPi LCD class has a number of functions

to enable simple control of the LCD. We'l l make

use of a few of these. Create a new script (in the

same folder as AndyPi_LCD.py) as fol lows:

#! /usr/bin/python

from AndyPi_LCD import AndyPi_LCD

from processing import Process

import time

import feedparser

lcd=AndyPi_LCD()

lcd. lcd_init()

lcd. led(512)

msg = feedparser. parse(

' http: //feeds. bbci. co. uk/news/rss. xml?edit

ion=uk'). entries[0] . title

After importing the required modules, we set the

variable "lcd" as the AndyPi_LCD() class,

initial ise the LCD, and set the brightness of the

backlight (0=off, 51 2=ful l brightness, using

PWM). Then we can use the feedparser module

to set the string variable "msg" to the first ti tle of

the BBC world news feed.

To display text, you can use the AndyPi_LCD

function static_text() . Here we display text on l ine

1 and 2, and clear it after 30 seconds:

lcd. static_text(1, “c”, “World News: ”)

lcd. static_text(2, “l”, msg)

time. sleep(30)

lcd. cls()

This script is useful for displaying a short static

message, but it's not much use for an RSS feed

as it only displays the first 1 6 characters that fit.

Instead we can use the function cal led

scrol l_clock, which displays the time on one line,

and scrol ls the ful l text along the the second.

However, in order to update the LCD by moving

one character along at a time, the function loops

infinitely - and therefore no code after this is

executed. To get around this, we can run this

function in a thread (a simultaneously running

process) so we can then continue to give further

commands (in this case to check for the latest

news updates). Here we set up a thread process

using scrol l_clock, start the thread, wait 60

seconds, update "msg" to the latest RSS feed,

and stop the thread. The while loop then repeats

to continue scrol l ing the text. In general, i t's bad

practice to terminate a thread, but in this case we

know that scrol l_clock is an infinite loop that wil l

never complete.

while True:

p = Process(target=lcd. scroll_clock,

args=(1, "c" , 0. 3, msg))

p. start()

time. sleep(60. 0)

msg=feedparser. parse(' http: //feeds.

bbci. co. uk/news/rss. xml?edition=uk'). entri

es[0] . title

p. terminate()

The scrol l_clock function takes four arguments.

Firstly, choose either 1 or 2 to determine which

l ine the clock is placed on. Secondly, choose “l”,

“r” or “c” to set the clock alignment. Thirdly,

specify the scrol l ing speed, and the final

argument takes any string of characters - here

the variable msg (which contains RSS feed text) .

RSS feeds of many different topics are widely

avai lable on the internet, but there are many

other things you could use this display for too -

this script is just the start for your own

experiments!

http://andypi.co.uk/

1 6

SKILL LEVEL : INTERMEDIATE

John Shovic

Guest Writer

PROJECT CURACAO
Remote sensor monitoring in the Caribbean

Part 2: The environmental
subsystem

What is Project Curacao?

This is the second in a four part series discussing

the design and bui lding of Project Curacao, a

sensor fi l led project that wil l hang on a radio tower

on the island nation of Curacao. Curacao is a

desert island 1 2 degrees north of the equator in the

Caribbean.

Project Curacao is designed to monitor the local

environment unattended for six months. I t operates

on solar power cel ls and wil l communicate with the

designer via an iPad App called RasPiConnect. Al l

aspects of this project are designed to be

monitored remotely.

System description

Project Curacao consists of four subsystems. A

Raspberry Pi Model A is the brains and the overal l

control ler. The Power Subsystem was described in

part 1 . In Part 2 we wil l describe the Environmental

Sensor Subsystem.

The Environmental Subsystem

This subsystem consists of an indoor humidity

sensor (indoor here refers to inside the box), an

indoor temperature and barometric pressure

sensor, and a luminosity sensor. An outdoor

temperature and humidity sensor is placed on the

outside of the bottom of the box. Al l of these

sensors are connected to the Raspberry Pi Model

A, with the exception of the AM231 5 outdoor

temperature and humidity sensor, which is

connected to the Arduino based battery watchdog

for reasons given on the next page. A small

computer fan under Raspberry Pi control is also

connected to provide airflow through the box when

inbox temperatures get too high or the indoor

humidity gets too high.

What hardware to use?

We are using the fol lowing hardware for the

Evironmental subsystem:

1 Adafruit BMP085 Temp/Baro Sensor (I2C)

1 Adafruit DHT22 Temp/Humidity Sensor

1 AM231 5 - Encased Temp/Humidity Sensor

1 Adafruit TSL2561 Digital Luminosity Sensor

1 Akust 5V-1 2V 8cm Computer Fan

1 Evi l Mad Scientist Simple Relay Shield

1 7

What to measure?

We want to measure the temperature, humidity and

local l ight levels both inside and outside of the

containing box to see what is happening in the local

environment. This information wil l be placed in a

MySQL database for later analysis.

Putting in the sensors

The BMP085 and TSL2561 are soldered onto a

prototype board with I2C coming in from the

Raspberry Pi. There is a plug to further extend the

I2C bus to an encased temperature and humidty

sensor outside of the box (the AM231 5). The

AM231 5 proved to be problematic (see below), but

the other I2C sensors worked like champions. The

DHT22 inexpensive indoor temperature and

humidity sensor worked well with additional

software to fi l ter out bad readings. This caused

problems with the RasPiConnect control software

because of the unrel iable delay to good readings

(see below). We control the fan with a relay that

connects directly to the output of the solar cel ls

(6.5V on a good day). We figured that the fan

would be used on the sunniest days. The fan and

relay coi l each take 70mA. We are investigating

replacing the relay with a lower energized coi l

current (see Sainsmart: http://goo.gl/aSTU0z) as

1 40mA really hurts our power budget.

Monitoring the sensors and fan
remotely

Project Curacao is monitored remotely through the

Internet by the use of SSH and RasPiConnect

(www.milocreek.com). Each of the main

subsystems has a different display. The

environmental display has a graph for

temperature/humidity and luminosity/barometric

pressure/fan state (shown below). The software for

generating this display is also on

github.com/projectcuracao.

Problems with sensors

There were two major problems with sensors in

this design. First of al l the AM231 5 is an odd duck.

I t has a power down sequence that requires it to be

addressed twice (once to wake up and once to

read - for example it takes two invocations of

i2cdetect to see the sensor) and secondly, it just

isn't rel iable using 3.3V for I2C. A solution might be

to put a level converter in for the device, but since

we had a 5V I2C on the battery watchdog Arduino,

we decided to add it to the watchdog. Secondly,

the DHT22 has some very tricky timing in order to

read it from the Raspberry Pi. Since the Raspberry

Pi is a multitasking machine, you can't depend on

the timing 1 00%. This means that readings from

the DHT22 fai l on a regular basis. The way to fix

this problem is to keep reading it unti l the correct

format is received. However, you can only read it

every 3 seconds. This plays havoc with an HTTP

based monitoring system such as RasPiConnect

with 1 0-1 5 second timeouts. This problem was

fixed by reading the DHT22 in the main software

and having RasPiConnect read the last reading

from the MySQL database.

What is coming up?

Part 3 goes through the Raspberry Pi Camera

Subsystem and Part 4 describes the software

system used for Project Curacao. Al l of the code

used in this article is posted on GitHub at

github.com/projectcuracao.

More discussion on Project Curacao at:

http://switchdoc.blogspot.com

http://github.com/projectcuracao
http://github.com/projectcuracao
http://www.milocreek.com
http://goo.gl/aSTU0z
http://switchdoc.blogspot.com

2018

SKILL LEVEL : BEGINNER

Jacob Marsh

ModMyPi

PHYSICAL COMPUTING
Brought to you by ModMyPi

Buttons and switches with the
Raspberry Pi - part 3

In our previous tutorial we bui lt a simple button circuit

connected to our Raspberry Pi via the GPIO ports and

programmed a Python script to execute a command when

the button was pressed. We then expanded our circuit

with an LED. In this tutorial , we wil l be expanding our

script to include timer and trigger functions for our LED. As

the script wi l l be more complicated, it requires a proper

clean-up function. Start by reading the previous two

tutorials featured in Issues 1 7 and 1 8, before trying this

one!

Adding LED control code

Now that our LED expansion circuit has been bui lt, we wil l

add some code into our previous program. This additional

code wil l make the LED flash on and off when the button is

pressed. Start by booting your Raspberry Pi to the

Raspbian GUI (startx) . Then start IDLE3 and open the

previous example program button.py. Save this fi le as

button_led.py and open it.

Since we want the LED to flash on and off, we wil l need to

add a time function to al low Python to understand the

concept of time. We therefore need to import the time

module, which al lows various time related functional ity to

be used. Add another l ine of code underneath l ine 1 :

import time

Next, we need to define GPIO P1 8 [Pin 1 2] as an output to

power our LED. Add this to our GPIO.setup section (l ine

4), below the input pin setup l ine:

GPIO. setup(18, GPIO. OUT)

Once GPIO P1 8 [Pin 1 2] has been set as an output, we

can turn the LED on with the command GPIO.output(1 8,

True). This triggers the pin to high (3.3V). Since our LED

is wired directly to this output pin, i t sends a current

through the LED tha turns it on. The pin can also be

triggered low (0V) to turn the LED off, by the command

GPIO.output(1 8, False).

Now we don’t just want our LED to turn on and off,

otherwise we would have simply wired it to the button and

a power supply. We want the LED to do something

interesting via our Raspberry Pi and Python code. For

example, let us make it flash by turning it on and off

multiple times with a single press of the button!

In order to turn the LED on and off multiple times we are

going to use a for loop. We want the loop to be triggered

when the button has been pressed. Therefore, it needs to

be inserted within the if condition 'I f input_value == False:',

that we created in our original program. Add the fol lowing

below the l ine 'print(''Who pressed my button! ”) ' (l ine 9),

making sure the indentation is the same:

for x in range(0, 3):

https://www.modmypi.com/shop

19

Any code below this function wil l be repeated three times.

Here the loop wil l run from 0 to 2, therefore running 3

times. Now we wil l add some code in the loop, such that

the LED flashes on and off:

GPIO. output(18, True)

time. sleep(1)

GPIO. output(18, False)

time. sleep(1)

The LED is triggered on with the command

GPIO.output(1 8, True). However, since we do not want to

immediately turn it back off, we use the function

time.sleep(1) to sleep for one second. Then the LED is

triggered off with the GPIO.output(1 8,False) command.

We use the time.sleep(1) function again to wait before the

LED is turned back on again.

The completed program should be of the form:

import RPi. GPIO as GPIO

import time

GPIO. setmode(GPIO. BCM)

GPIO. setup(17, GPIO. IN)

GPIO. setup(18, GPIO. OUT)

while True:

input_value = GPIO. input(17)

if input_value == False:

print("Who pressed my button?")

for x in range(0, 3):

GPIO. output(18, True)

time. sleep(1)

GPIO. output(18, False)

time. sleep(1)

while input_value == False:

input_value = GPIO. input(17)

Save the fi le and open a new terminal window. Then type

the fol lowing command:

sudo python button_led. py

This time when we press the button a message wil l appear

on the screen and the LED should also flash on and off

three times!

To exit the program script, simply type CTRL+C on the

keyboard to terminate it. I f i t hasn't worked do not worry.

Do the same checks we did before. First, check the circuit

is connected correctly on the breadboard. Then check that

the jumper wires are connected to the correct pins on the

GPIO port. Double check the LED is wired the right way

round. I f the program sti l l fai ls, double check each l ine of

the program, remembering that Python is case-sensitive

and correct indentation is needed.

I f is everything is working as expected, you can start

playing around a bit with some of the variables. Try

adjusting the speed the LED flashes by changing the value

given to the time.sleep() function.

You can also change the number of times that the LED

flashes by altering the number times that the for loop is

repeated. For example if you wanted the LED to flash 30

times, change the loop to: for x in range(0, 30).

Have a go playing around with both these variables and

see what happens!

Exiting a program cleanly

When a program is terminated (due to an error, a keyboard

interrupt (CTRL+C) or simply because it's come to an

end), any GPIO ports that were in use wil l carry on doing

what they were doing at the time of termination. Therefore,

if you try to run the program again, a warning message wil l

appear when the program tries to 'set' a pin that’s already

in use from the previous execution of the program. The

program wil l probably run fine, but it is good practice to

avoid these sorts of messages, especial ly as your

programs become larger and more complex!

To help us exit a program cleanly we are going to use the

command GPIO.cleanup(), which wil l reset al l of the GPIO

ports to their default values.

For some programs you could simply place the

GPIO.cleanup() command at the end of your program.

This wil l cause the GPIO ports to be reset when the

program finishes. However, our program never ends by

itself since it constantly loops to check if the button has

been pressed. We wil l therefore use the try: and except

syntax, such that when our program is terminated by a

keyboard interruption, the GPIO ports are reset

automatical ly.

The fol lowing Python is an example of how the try: and

except command can be used together to exit a program

cleanly.

20

Place any variable definitions and

GPIO set-ups here

try:

Place your main block of code or

loop here

except KeyboardInterrupt:

GPIO. cleanup()

Program will end and GPIO ports

cleaned when you hit CTRL+C

finally:

GPIO. cleanup()

Note that Python wil l ignore any text placed after hash tags

(#) within a script. You may come across this a lot within

Python, since it is a good way of annotating programs with

notes.

After we have imported Python modules, setup our GPIO

pins, we need to place the main block of our code within

the try: condition. This part wi l l run as usual, except when

a keyboard interruption occurs (CTRL+C). I f an

interruption occurs the GPIO ports wil l be reset when the

program exits. The final ly: condition is included such that if

our program is terminated by accident, i f there is an error

without using our defined keyboard function, then the

GPIO ports wil l be cleaned before exit.

Open button_led.py in IDLE3 and save it as

button_cleanup.py. Now we can add the code previously

described into our script. The finished program should

have the form:

import RPi. GPIO as GPIO

import time

GPIO. setmode(GPIO. BCM)

GPIO. setup(17, GPIO. IN)

GPIO. setup(18, GPIO. OUT)

try:

while True:

input_value = GPIO. input(17)

if input_value == False:

print("Who pressed my button?")

for x in range(0, 3):

GPIO. output(18, True)

time. sleep(1)

GPIO. output(18, False)

time. sleep(1)

while input_value == False:

input_value = GPIO. input(17)

except KeyboardInterrupt:

GPIO. cleanup()

Program will end and GPIO ports cleaned

when you hit CTRL+C

finally:

GPIO. cleanup()

Notice that only the loop part of the program is within the

try: condition. Al l our imports and GPIO set-ups are left at

the top of the script. I t is also important to make sure that

al l of your indentations are correct!

Save the fi le. Then run the program as before in a terminal

window terminal:

sudo python button_cleanup. py

The first time you run the fi le, you may see the warning

message appear since the GPIO ports have not been reset

yet. Exit the program with a keyboard interruption

(CTRL+X). Then run the program again and hopeful ly this

time no warning messages wil l appear!

This extra code may seem like a waste of time because the

program sti l l runs fine without it! However, when we are

programming, we always want to try and be in control of

everything that is going on. I t is good practice to add this

code, to reset the GPIO when the progam is terminated.

This article is
sponsored by
ModMyPi

All breakout boards and accessories used in this

tutorial are avai lable for worldwide shipping from

the ModMyPi webshop at www.modmypi.com

http://www.modmypi.com
http://www.modmypi.com

http://milocreek.com

22

SKILL LEVEL : INTERMEDIATE

Fred Sonnenwald &
Hamish Cunningham

Guest Writers

ELECTRONIC ART
Using an accelerometer

Painting with XLoBorg

Maker Culture meets Art

There is a new conjunction emerging around open

hardware, maker culture, and art. Remember how pop

culture changed with the advent of punk in the late

seventies? We seem to be witnessing a similar explosion

of 'garageband' creativity in the tennies, and the Raspberry

Pi is proudly leading the charge for general purpose open

source devices in this context. (The Raspberry Pi

Foundation even has an artist in residence — Rachel

Rayns.)

Open-source hardware al lows people to make their own

robots, cameras or even electrocardiagraph machines by

downloading schematics and incorporating any changes

they need — and, typical ly, free open-source software is

avai lable to run these projects. 3D printers, laser cutters

and CNC routers have helped this adoption of the open-

everything ethos.

There are stacks of DIY projects based on the Raspberry

Pi, and the flood shows no sign of slowing. The Raspberry

Pi is the first general purpose device (in contrast to the

magnificent, but more special ised Arduino), which is very

easy to cobble together with add-on electronics. The

thriving community that has grown up around the

Raspberry Pi (including this magazine) is making a huge

impact, from changes in the UK school curriculum to the

Onion Pi anti-survei l lance device and BrickPi's new brains

for old lego Robots.

This article describes the PiBrush, a simple on-screen

painting system that uses the XLoBorg motion and

direction sensor add-on board from PiBorg. The XLoBorg

adds an accelerometer and a magnetometer (compass) to

your Pi and makes all sorts of motion-based interaction

possible — like a Kinect, but free and open. The header

graphic for this article was created with the PiBrush.

The PiBrush is an interactive art and technology exhibit (a

rather grand name for something so small) that simulates

fl icking paint off the end of a paintbrush onto canvas — as

Jackson Pollock famously did in the 1 940s and 50s. The

setup includes two Raspberry Pis (one Model B and one

Model A), one XLoBorg, a battery pack, a display and two

Wi-Fi dongles. The Model A is held by the user and waved

around. I t col lects acceleration data with the XLoBorg.

These data are then transmitted via Wi-Fi to the Model B,

which processes the data col lected into paint droplets and

displays them on the screen.

Functional ly it looks l ike this:

23

and here is the hardware:

We may improve on the elastic band in future models. The

Model A (cl ient) top and the Model B (server) bottom,

where the red button on the server saves the picture and

starts a new picture.

The Code

The hardware for this project is fairly straightforward. The

XLoBorg plugs directly into the GPIO pins as a block on

the cl ient, and a push button simply connects a ground and

GPIO pin on the server. The software is where the

chal lenge l ies: intermediate to advanced code is needed,

using Python and some basic physics.

The code is avai lable on GitHub at:

https://github.com/hamishcunningham/pi-

tronics/tree/master/pibrush/bin

The core is in accel_cl ient.py which runs on the Model A

and accel_server.py which runs on the Model B. The

former reads from the sensor and sends data across the

network; the latter processes the data and displays the

output on the screen.

accel_server.py

The server script is the meat of the programming as it

handles the physics simulation and display. First, as we're

dealing with sensor input we want to use something cal led

a moving average to store accelerometer readings, which

is initial ised l ike this:

length of moving average array

AL = 20

accelerometer storage for moving average

AXa = numpy. zeros((AL, 1))

AYa = numpy. zeros((AL, 1))

AZa = numpy. ones((AL, 1))

array index for accelerometer data

Ai = 0

A moving average is the average of, in this case, the last

20 readings. Some sort of fi l tering is almost always

necessary when dealing with the sort of analog input data

that comes from an accelerometer to prevent sudden

jumps in the readings from having an undue impact on the

processing. A moving average is a convenient and easy

way to do it. We simply input the current reading at index

Ai and then increment Ai unti l i t exceeds AL, then wrap it

back around:

AXa[Ai] = float(a[0])

AYa[Ai] = float(a[1])

AZa[Ai] = float(a[2])

Ai = Ai + 1

if Ai == AL:

Ai = 0

This is an array of the acclerometer data, as read over the

network. I have used NumPy, because it executes more

quickly than standard Python l ists and there are convenient

functions to make things simpler l ike .ones() to initial ise al l

of AZa to a value of one — we assume a starting 1 G of

gravity downwards.

Functions

I f you don't know, a function is a bit of code written in such

a way that it can be executed from different places in the

main program. Each call you can pass different arguments

(input parameters) that wil l be operated on and a new

https://github.com/hamishcunningham/pi-tronics/tree/master/pibrush/bin

24

result returned. There are two quite important functions

used in the code that have to do with polar coordinates. I f

you know X, Y, Z, those are Cartesian coordinates.

def polar(X, Y, Z):

x = numpy. linalg. norm([X, Y, Z])

if (x > 0):

y = -math. atan2(Z, X)

z = math. asin(Y / x)

else:

y = 0

z = 0

return (x, y, z)

Here polar takes a Cartesian X, Y, and Z coordinate and

returns the equivalent polar coordinates, where x is R (the

radius to the point from the origin) , and y is A and z is B.

The latter are the angular rotation about the Z and Y axis.

Because the Model A may be rotated relative to the

screen, we need a convenient mechanism for rotating the

acceleration vectors recorded to ones we can use on the

screen. In order to do that though we need to subtract the

Earth's gravitational field. This is what the polar

coordinates are used for. I t's an extension of the regular

subtraction of vectors. This function was based on this

forum thread.

def cartesian(X, A, B):

x = 0 # don' t bother - isn' t used

y = X * math. sin(B) * math. sin(A)

z = X * math. cos(B)

return (x, y, z)

Here cartesian, as you might suspect, does the opposite of

polar, taking the distance X and rotations A and B and

turns them back into Cartesian coordinates. As this code

is only used as part of getting coordinates ready for the

screen, x, as the coordinate into the screen, is permanently

set to 0. This is an optimization to help the code run better

on the Pi. The code here is based on this explanation of

Cartesian and polar coordinates.

Main program

The main program consists of an infinitely repeating loop

that reads the accelerometer data over the network,

applies the earl ier moving average, and then processes it.

move time forward

dt = time. time() - last_time

last_time = time. time()

The first thing to be done each loop is to move time

forwards. Ideal ly execution time for each loop is identical

and dt (the timestep) is constant. However, this isn't the

case, so by knowing how long it's been since the last loop,

we can check how far to move things, i .e., distance =

velocity * time.

moving averages for acceleration

AX = numpy. sum(AXa) / AL

AY = numpy. sum(AYa) / AL

AZ = numpy. sum(AZa) / AL

combined acceleration for

working out resting gravity

A = math. fabs(numpy. linalg. norm([AX,

AY, AZ]) - 1)

After reading in the accelerometer data and putting it in the

AXa, etc., arrays, we then need to take the average of that

array. .sum() adds up the values in an array. Then to

perform an average, we divide by the number of elements

AL. Therefore, AX, AY and AZ contain the moving

average.

The total combined acceleration A is worked out by

calculating the Euclidean distance from 0 to the

acceleration vector position using l inalg.norm(). At rest this

should work out to just about 1 (remember we're working in

acceleration in G(ravities), which is why we subtract 1 . We

then use .fabs() so that we always have a positive result

which indicates the difference between acceleration due to

gravity and the experienced acceleration. At rest this

number should be very small .

in a slow moment store most recent

direction of the gravitational field

if A < 0. 02 and (last_time - last_G) > 0. 12:

GX = AX

GY = AY

GZ = AZ

(PGR, PGA, PGB) = polar(GX, GY, GZ)

last_G = last_time

rotate to screen coordinates

and subtract gravity

(PAR, PAA, PAB) = polar(AX, AY, AZ)

(GAX, GAY, GAZ) = cartesian(PAR,

PAA - PGA + PSGA, PAB - PGB + PSGB)

GAZ = GAZ - PGR

Now that we know something about gravity and the current

25

acceleration, we can act on it. I 've pointed out how in order

to know which way the Model A is moving, we need to

know where gravity is first. We can't know it exactly, but

we can estimate it. Since A is the acceleration the Model A

is experiencing excluding gravity, i t's very low when the

Model A isn't moving at al l . This means that the only

acceleration being experienced is due to gravity.

Therefore, we can take the estimate and turn it into polar

coordinates.

For every loop we need to actual ly do the gravity

subtraction and rotation for the screen. We turn the current

acceleration into polar coordinates. Then on the next l ine

we need to turn them back into cartesian coordinates,

whi le subtracting the estimated rotation of the gravitational

field. The GAZ line after this subtracts gravity from its

absolute direction.

Paintbrush physics

Perhaps the most interesting bit of what is going on within

every loop it the paint brush physics. This is the code that

controls what happens on the screen. Everything up to this

point has been to define GAY and GAZ, two variables

indicating horizontal and vertical acceleration relative to

the screen. Now we can interpret this acceleration and

make something happen.

acceleration detection for paint strokes

A = numpy. linalg. norm([GAY, GAZ])

After this, A is the total acceleration of the Model A, with

respect to the screen, ignoring gravity. We can use this

number to detect roughly if we are speeding up or slowing

down. What happens after that?

if fast == 1:

accelerate the paint brush

VX = VX - GAY * dt * 170

VY = VY - GAZ * dt * 170

BX = BX + VX * dt * 120

BY = BY + VY * dt * 120

This bit of code is actual ly responsible for moving the

brush, and only when we think it's moving. To get position

from acceleration, we have to integrate twice. Imagine you

are in a car travel l ing down the motorway at 1 00 kph. In

one hour you wil l have travel led 1 00 km. Easy? That is

one simple integration, going from velocity to

displacement. Acceleration is the rate of change in

velocity, e.g. the speed at which the needle of the

speedometer in the car cl imbs. So now imagine

accelerating at 1 kph per second, after 1 0 seconds you'l l

be going 1 0 kph faster. After this acceleration, instead of

1 00 kph you are now going at 1 1 0 kph. To get the

distance, you have to to integrate twice. (Fun fact: i f you

kept up that acceleration, after an hour you'd be going

3,700 kph and would have traveled 36,370 km. Or almost

around the Earth.)

We increment the brush velocity by the acceleration,

factored by the timestep to keep the animation smooth. I

have also added a factor of 1 70 to scale up the

acceleration, so it displays nicely on the screen. (This

means that one pixel approximately represents 1 70

metres.) The next integration increments the brush

position by adding on the current velocity, also multipl ied

by the timestep and scaled, this time by 1 20. (These

values just work, but are physical ly nonsense.)

add splotches. . . . high velocity big

splotches far apart, low small close

if P > 0:

V = numpy. linalg. norm([VX, VY])

S = S + V

d = A * random. randint(3, 5) * 25 + V

Now that the paintbrush is moving, here comes the last

and most important bit of code: making paint droplets.

This bit of code is only run while the paintbrush is moving

and only if there is paint on the brush. Vaguely, one

expects that the further the brush has been swung, more

paint should come off. The faster the brush is moving

should also cause more paint to come off. V is calculated

as the total velocity and S is a running displacement. d is

calculated as a rough estimtate of paint droplet spacing.

Paint droplets fly off due to two factors:

1) Fluid mechanics. Roughly, I 'm speaking of the affect of

what happens when you move a glass of water too quickly.

2) Air resistance. The force you feel acting on your hand

when you stick it out the car window on a drive on a nice

summer's day.

Both of these factors are rather complex subjects.

Therefore, I have lumped them together as the produce

similar results — paint flying off the brush. d is made up of

26

Mobile power for the Raspberry Pi - easy on the one hand,

hard on the other: i t is easy to plug in a 5V battery pack -

but when it runs out your Raspberry Pi gets a power cut

that might well corrupt the SD cards.

Over the last year we've been designing what we hope is

the perfect mobile power solution for the Raspberry Pi,

which we're cal l ing MoPi, and we've just taken delivery of

the second generation prototype. I think it does pretty

much everything you could want for your Raspberry Pi on

the go:

• it wi l l accept multiple sources, including standard AA

batteries, or your car cigarette l ighter, or an old laptop

power supply or etc..

• i t wi l l let you do hot-swap power replacement without

stopping work

• it wi l l shutdown your Raspberry Pi cleanly if the battery

charge level gets too low, and it has a neat l i ttle power

switch on the top to save you logging in to shutdown at

other times,

• it behaves l ike a uninterrupltible power supply (UPS)

when the Raspberry Pi is plugged into a mains supply

and it even fits in the Pibow (and other well-known

Raspberry Pi cases)

Here's the circuit board, with an eight-pack of AAs (that wil l

get you around 9 hours of mobile time for a Model B

Raspberry Pi.

More detai ls of the project can be found at:

http://pi .gate.ac.uk/pages/mopi.html

A (our acceleration) times a random factor which is the

fluid dynamics bit, and V is added for the air resistance bit.

The random factor makes things a bit more interesting,

perhaps taking into account things l ike globs of paint or

hairs in the brush getting tangled. 25 is the scaling factor

this time. (This applies to the acceleration term only as

velocity was already scaled before.)

if S > d:

S = S - d

P = P - pow(A*4, 2) * math. pi

pygame. draw. circle(screen, (COLR, COLG,

COLB), (int(BX), int(BY)), int(A*45))

draw = 1

I f we've travel led further than the expected paint droplet

seperation according to our approximate simulation, we

need to draw a paint droplet! We calculate the amount of

paint that was in the droplet arbitrari ly, as the acceleration

times four, squared, times π (pi) . (This is the area of a

circle formula.) This is subtracted from P, the paint on the

paintbrush variable. The paint droplet actual ly drawn on

the screen is done using cricles, with the Pygame function

draw.circle() . The drawing on the screen takes place with

a random colour, at the paintbrush position (BX, BY). A*45

is the paint droplet radius, where 45 is another scal ing

factor.

http://pi.gate.ac.uk/pages/mopi.html

www.ciseco.co.uk
www.rs-components.com/raspberrypi

28

SKILL LEVEL : BEGINNER

Geoff Harmer

Guest Writer

CATCH-UP TV
Avoid missing your favourite programme

How to configure OpenELEC so
you can watch TV programmes

Do you want to watch TV programmes using

your Raspberry Pi?

• No need to buy a smart TV to get your HDTV to

connect to catch-up TV services such as BBC

iPlayer and ITV Player in the UK, or CTV and

Space and Bravo in Canada, or RTE1 and RTE2

in Ireland or Network1 0 in Austral ia.

• No need to have your Raspberry Pi keyboard

and mouse and their cables spoi l ing the look of

your HDTV.

• Use a Raspberry Pi with a Wifi USB dongle

running OpenELEC - a compact, high

performance Linux distribution that has XBMC

media centre software instal led - and then hide

the Raspberry Pi behind the HDTV.

• Use a remote control app on your Android, iOS

or Blackberry smartphone to control XBMC via

your home Wifi so you can select and watch

catch-up TV programmes on your HDTV.

• No Linux commands are needed to instal l or

use OpenELEC with the Raspberry Pi.

My style of television watching over the last few

years has switched from live viewing and

recording, to predominantly using catch-up TV.

Catch-up TV is particularly helpful when a

missed programme gets a good review the next

day from friends or from TV reviews in

newspapers or on the web.

I am going to show you how to instal l catch-up

TV services using XBMC and the OpenELEC

distribution on a Raspberry Pi to work with your

HDTV. I t takes about 60 minutes to set up and

requires no use of Linux commands either!

Permanent components

• Raspberry Pi Model A or Model B.

• Good quality 5V power adapter for the

Raspberry Pi (minimum 700mA or greater) .

• HDMI cable to connect the Raspberry Pi to

your HDTV.

• Wifi nano USB dongle if you do not have easy

access to a wired internet connection (the Wifi

dongle from http://www.thepihut.com uses bui lt-

in drivers and does not require a powered USB

hub).

• 4GB+ SD card loaded with the latest NOOBS

software from http://www.raspberrypi.org.

• Android, iOS or Blackberry 1 0 device with a

downloaded app to remotely control XBMC, e.g.

XRMT for Blackberry 1 0 OS, or Official XMBC

Remote for Android, or Official XMBC Remote

for iOS.

http://www.thepihut.com
http://www.raspberrypi.org

29

Note: The Raspberry Pi USB ports may not be

able to supply enough current for certain Wifi

dongles. This can result in video stuttering.

Assuming you have a good connection, the

solution is to use a powered USB hub with a

minimum 2A power supply. Some hubs wil l also

back power the Raspberry Pi so you only need

the one power supply. Check http://el inux.org for

a l ist of known good hubs.

Installation instructions

Step 1. GetNOOBS

Copy the latest NOOBS distribution onto a 4GB+

SD card. When finshed insert the SD card into

the Raspberry Pi, plug in the Wifi USB dongle

and use a HDMI cable to connect the Raspberry

Pi to your HDTV. Plug in the power adaptor and

boot up the Raspberry Pi. The first time you start

NOOBS you wil l be asked to choose what

operating system to instal l . Choose OpenELEC .

This wil l take a few minutes to instal l , after which

you can reboot your Raspberry Pi.

Step 2. XBMC andnetworks

Note: I f you are using a Raspberry Pi Model A

then for this section you wil l temporari ly need to

use a powered USB hub so you can connect

both the Wifi dongle and a mouse.

After your Raspberry Pi has started, XBMC wil l

present its main screen known as Confluence

(blue bubbles background) fol lowed by an initial

setup wizard. Here you choose your region,

provide a friendly network name then choose

from a list of avai lable wireless connections. You

wil l need to know your wireless connection name

and security passphrase.

By default your network IP address and DNS

servers wil l be automatical ly configured.

However you may want to change the DNS

servers to watch overseas programming using

services l ike http://www.unblock-us.com, or you

may want to change the IP address to use a

static IP. I f you want to change the network

settings later, from the main screen select

SYSTEM, OpenELEC and then cl ick on

Connections . Cl ick on your connection and

choose Edit from the pop-up menu.

A static IP address tends to be more rel iable

because it remains fixed and so the remote app

on your smartphone wil l always connect. The IP

address created using DHCP can vary

depending on what other devices are connected

to the broadband router.

Setting up a static IP (optional)

Choose to Edit your connection, as described

above and cl ick on IPv4. You wil l see the IP

Address Method is currently set to DHCP. Cl ick

on this and change it to Manual . Now click on IP

Address and enter an unused address within the

range permitted by your broadband router e.g.

1 92.1 68.1 .50. You can leave the Subnet Mask

(e.g. 255.255.255.0) and Default Gateway

(e.g. 1 92.1 68.1 .254) at their default settings.

To change the DNS settings for your connection

choose DNS servers . You wil l see options to

enter IP addresses for up to three nameservers.

By default these wil l already have the IP

addresses of the DNS servers from your internet

provider, but you can choose to use others. For

example OpenDNS provides enhanced security

using its own free to use DNS server IP

addresses at http://www.opendns.com. [Ed: I

http://elinux.org
http://www.unblock-us.com
http://www.opendns.com

30

changed these to the Unblock-Us DNS servers

so, as an ex-pat, I can still watch BBC iPlayer

content in Canada] .

At this point it is a good idea to cl ick the Power

button on the main screen and reboot the

Raspberry Pi. When OpenELEC restarts you

should have a working network connection.

Step 3. Other important XBMC features

1 . Is the display too large for your screen or do

you see a black border? To change the screen

size select SYSTEM then Settings and cl ick on

Appearance . In the Skin section, change Zoom

(up and down keys) to set an appropriate

reduction.

2. Stop RSS feeds across the bottom of the

Confluence screen. From the Confluence screen

select SYSTEM then Settings and cl ick on

Appearance . In the Skin section cl ick on Show

RSS news feeds to turn it off.

3. To al low remote wireless control of XBMC

select SYSTEM then Settings and cl ick on

Services . In the Webserver section cl ick on

Allow control of XBMC via HTTP to turn

this option on. Note the default username is xbmc

with no password. You can optional ly change

these. In the Remote control section cl ick on

Allow programs on other systems to

control XBMC .

4. To ensure OpenELEC has your home

workgroup from the main screen select SYSTEM

then Settings and cl ick on Services . In the

SMB client section the Workgroup option is set

to WORKGROUP by default. I f your home

network has its own workgroup name then you

must change WORKGROUP to your home

workgroup name. You can find out your home

workgroup name from your Windows PC by

opening the Control Panel , open the System

and Security category then cl ick on System.

The workgroup is shown near the bottom.

Step 4. Install TVcatch-up files

Add-ons need to be added to XBMC in order to

use catch-up TV. Here are some examples that

have been tested to work.

UK:

BBC iPlayer

http://code.google.com/p/xbmc-iplayerv2/

downloads/l ist

ITV player

http://code.google.com/p/xbmc-itv-player/

downloads/l ist

I reland:

http://mossy-xbmc-repo.googlecode.com/

fi les/plugin.video.irishtv-2.0.1 1 .zip

Canada:

http://goo.gl/j6Fw5K

Austral ia:

http://xbmc-catchuptv-au.googlecode.com/

fi les/plugin.video.catchuptv.au.ten-0.4.0.zip

The Canadian add-in is particularly good as it

covers 20 stations, but just l ike the BBC and ITV

add-ins, it is region locked. Fortunately

Austral ia's Network1 0 and Ireland's RTE stations

appear to be freely avai lable to al l .

Using your PC, copy the latest zip fi les onto a

USB memory stick without unzipping them. Now

plug the USB memory stick into the USB port of

your Raspberry Pi and power-up the Raspberry

Pi. To instal l these add-ons, from the main menu

select VIDEOS then Add-ons and cl ick on Get

More . At the top of the l ist cl ick on . . (i .e. two

dots). At the top of the next l ist again cl ick on . .

(i .e. two dots). Now click on Install from zip

file . A new window wil l pop-up. Select your

USB memory stick. I f i t is not visible remove it

and insert it again.

Navigate to the first add-on you wish to instal l

and cl ick it. I t gets instal led at this point within

about 30-40 seconds but it is not obvious. You

wil l be returned to the Install from zip file

menu and you may momentari ly observe (bottom

http://code.google.com/p/xbmc-iplayerv2/downloads/list
http://code.google.com/p/xbmc-itv-player/downloads/list
http://mossy-xbmc-repo.googlecode.com/files/plugin.video.irishtv-2.0.11.zip
http://goo.gl/j6Fw5K
http://xbmc-catchuptv-au.googlecode.com/files/plugin.video.catchuptv.au.ten-0.4.0.zip

31

right of the screen) that the new add-on has been

instal led. Check by returning to VIDEOS and

selecting Add-ons and you should see the name

of the add-on you just instal led. I f i t is absent,

wait a few minutes for it to appear and if sti l l

absent reboot your Raspberry Pi. Repeat for

each add-on, one at a time.

Step 5. XBMC remote control

Download and instal l the Official XBMC Remote

app to your Android or iOS device, or instal l

XRMT for your Blackberry 1 0 OS device.

As an example, here is how to configure XRMT

on your Blackberry 1 0 OS device. Once instal led

open the app and cl ick the three dots icon

(bottom right) and select Add Server . For

Server name enter openelec (lower case). For

Server IP address enter the address that you

set up for the Raspberry Pi in step 2 on page 23.

Leave the Port code as 9090 then cl ick the icon

at bottom left.

Now scrol l down from the top of the app, cl ick on

Settings and change the Auto connect by

cl icking on openelec below it. Close the settings

screen. The app is now ready to use.

Once you have instal led an XBMC remote app

on your smartphone you are ready to control

XBMC without a mouse or keyboard. Simply use

the remote control app to navigate the XMBC

Confluence screen, select VIDEOS and then

select Add-ons . Your add-ons wil l be displayed.

Simply cl ick on an add-on such as iPlayer to run

it. Enjoy the catch-up TV programmes.

Interesting extra facts and tips

HDMI connections

Are all the HDMI sockets on your TV in use with

other devices such as a PVR, bluray player and

games console? Not enough HDMI sockets on

your TV for your Raspberry Pi? The solution is to

use a 2-in/1 -out HDMI switch (e.g. Belkin) . Thus

both the Raspberry Pi and the other device are

connected to the HDTV. The Belkin product has

a button on it for selecting which of the 2 inputs

to currently use.

XRMTconnection issue

I f you have been using a mouse to control

XBMC, you may find that your Blackberry XRMT

won't connect. Unplug the mouse and reboot the

Raspberry Pi and then XRMT should connect.

Command line access

Do you want to access the OpenELEC operating

system with Linux commands from your

Windows PC? You can do this using a program

called PuTTY. PuTTY uses the SSH protocol to

connect to the Raspberry Pi. Download the latest

version of PuTTY from http://www.chiark.

greenend.org.uk/~sgtatham/putty/download.html.

You also need to set OpenELEC to al low a SSH

connection. From the XBMC main screen select

SYSTEM then OpenElec and cl ick on Services .

Select the SSH option and cl ick to enable it.

Reboot the Raspberry Pi. Once PuTTY is

instal led on your Windows PC simply run the fi le

putty. exe . After the PuTTY screen has opened

enter the IP address of your Raspberry Pi. Leave

the Port as 22 and choose SSH as the connection

type. Click on Open then enter the username and

password. For OpenELEC the default username

is root and the default password is openelec .

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

http://www.panavise.com

http://www.abelectronics.co.uk
http://www.abelectronics.co.uk/magpi/

34

SKILL LEVEL : BEGINNER

Ian McAlpine

MagPi Writer

THE PI STORE

A look at the diverse range of

applications in the Pi Store

Twelve months ago the Pi Store was launched

with just 24 titles. Today there are over 1 00 titles

and the vast majority are free. The MagPi takes

a look at some of the diverse content in the Pi

Store, especial ly the non-free content, to help

you determine what is worthy of your time and

money.

Digital downloads

Apple was one of the first companies to

encourage the mass adoption of digital

downloads with its iTunes store for music and

movies. This was later fol lowed with the App

store, the iBooks store and final ly iTunes U for

students. The App store was the only way you

could get applications for Apple mobile devices

and later it was extended to Apple's MacBook

and iMac computers.

Amazon pioneered the digital download of books

and today most major bookstores have digital

download affi l iations. Of course the instant

gratification advantages of digital downloads

were not lost on game console manufacturers

with Microsoft, Sony and Nintendo all introducing

digital download stores for their respective game

consoles. Digital app stores are less prevalent for

Windows based PCs with notable exceptions

being game centric Steam and Origin.

Introducing the Pi Store

Ultimately al l of the previously mentioned digital

download stores have a commercial interest for

the host company. But this was not the case for

the Raspberry Pi Foundation when they

launched the Pi Store. Instead of thinking how

much money could be made, they saw all the

advantages of having an app store dedicated to

the Raspberry Pi:

- a place where developers of al l ages can

share their creations with the Raspberry Pi

community.

- a place where complete beginners can instal l

and remove great Raspberry Pi titles without

having to go near a command line.

- a place where every Raspberry Pi user can

discover new content for their computer.

Unfortunately some did not see this and criticised

the Foundation for teaching kids capital ism! But

is this any different from giving kids pocket

money for doing chores? Having said that, there

are currently 1 00+ titles and at the time of writing

only six cost money... and you can buy them all

and sti l l have change from US$1 2.00/£8.00.

The Pi Store content is divided into five

categories; Games, Apps, Tutorials, Dev Tools

35

and Media. Before we explore each of these

areas here are some navigation tips that wil l help

you find the content you want.

In the Explore tab of the Pi Store there is an

option to fi l ter the content by status and also an

option to specify the sort order. I f you want to

explore content which is sti l l work-in-progress

then change the status fi l ter to In Progress.

You can also set it to Show All to see all Pi

Store content.

There are many sort options, but the most useful

are Most Played, Newest First and Top

Rated. Note that currently the Pi Store does not

store these settings so the next time you open

the Pi Store the status wil l l ikely be reset to

Finished and the sort order wil l be reset to

Price - Highest.

Several programs in the Pi Store do not run on

LXDE and require a reboot before they start.

Although there is a warning on the application

page in the Pi Store, there is no final "Are you

sure?" after you cl ick on Launch. So make sure

you have everything saved first.

Don't forget to tip!

When you receive good service you leave a tip.

Almost everything in the Pi Store is free. I f you

enjoyed playing a game or found a title useful,

consider showing your appreciation by leaving a

tip for the developer. I t's easy to do. In your

l ibrary select the title you want to tip then cl ick

View Details. In the detai ls page cl ick Tip

this Project to send $1 .00/£1 .00 by default.

Games

Surprisingly this is not the largest category in the

Pi Store, but with 30 titles at the time of writing

there is something for al l gamers here.

In Dr Bulbaceous : Puzzle Solver (US$2.99/

£1 .99) you drop different coloured objects and

when 3 or more are touching they disappear. The

goal is to clear the screen before the objects

reach the top. Although I found the game too

easy, kids wil l enjoy it. I t is colourful and well

implemented. Tip: To swap your current object

for something more potent, press the Enter key.

I t looks l ike the mouse should work, but it didn't

for me.

Alas Zombie X Pro ($1 .60/£1 .00) refused to run

correctly for me so I cannot comment on it. There

is a demo option you can try to see if i t works for

you.

DmazeD is a lot of fun. You search a maze for

the key to the exit, but it is dark so you have a

limited field of vision. Listen out for the monster

that is also in the maze with you!

Another game I found myself thoroughly enjoying

is The Little Crane That Could . Through

dexterous use of your crane and its many

movements you complete a series of increasingly

difficult tasks.

Many folks of a certain age (l ike myself!) use

their Raspberry Pi to rel ive the golden age of

home computing and there is no shortage of

36

games inspired from that decade. In the Pi Store

these include Abandoned Farmhouse

Adventure and King's Treasure - classic text

based adventures, Chocolate Doom - play al l

versions of Doom, NXEngine - a clone of the

"Cave Story" platformer, Star Flite - a Star Trek

retro game plus an emulator for the Atari800.

Other excel lent games include Freeciv - an

empire bui lding strategy game, Sqrxz 2 and

Sqrxz 3 - platformers, the impressive Open

Arena - first person shooter, OpenTTD - a

simulation game based on Transport Tycoon

Deluxe and Iridium Rising - a 3D space game

but currently suffering a "Servers Ful l" issue.

The first commercial game on the Pi Store was

Storm In A Teacup. I t remains one of my

favourite Raspberry Pi games, but unfortunately

it was recently removed from the Pi Store.

Hopeful ly it wi l l be back soon.

Apps

By far the largest category in the Pi Store, there

is an incredible selection of titles ranging from

uti l i ties to emulators to media programs to

'heavy-weight' applications. Examples of the

latter are Asterisk - a PBX system and the

bri l l iant LibreOffice - a Microsoft Office

compatible and equivalent office suite.

Four of the six paid applications can be found

here. OMX Player Remote GUI (US$3.00/

£1 .80) provides a web UI that can be used on a

smart phone or tablet device to control OMX

Player running on the Raspberry Pi. Simply enter

the given URL in your web browser, specify your

media folder and then have ful l control of

playl ists, volume and all the usual media

controls.

FastDosBox (US$2.37/£1 .35) is a fast 386

based PC emulator and is a great way to run 90's

era DOS based games. Another simi lar program

on the Pi Store is RPix86.

PiCon (US$1 .00/£0.60) is a very flexible

configuration manager for hardware tweaking. I t

provides a GUI for overclocking every aspect of

the Raspberry Pi, but for me its real strength is

with its video configuration. Visual ly get the

perfect monitor setup quickly and easi ly. No

more black bars! Multiple presets can be saved

so if you take your Raspberry Pi to different

locations (e.g. school, Raspberry Jam,

hackspace) you can get the best display

configuration quickly without changing your

'home' settings.

Timewaster (US$0.79/£0.49) wastes not only

your time, but also your money, if you are stupid

enough to buy it - which I did so you won't! I t is

disappointing that this was even allowed in the Pi

Store in the first place.

I was not famil iar with XIX Music Player, but it

is pleasantly surprising and is definitely worth

downloading. I am using it to l isten to internet

radio (Absolute Radio from the UK, Hit FM from

Belgium, MacJingle Heartbeat from Austria.. .)

whi le I layout this article using Scribus and all

running smoothly on the Raspberry Pi.

Staying with the music theme there are two

music creation applications in the Pi Store.

Schism Tracker is both a MOD fi le player and a

music composition tool. Basic instructions

explaining its operation are in issues 2, 1 2 and

1 3 of The MagPi.

With PXDRUM you wil l have a lot of fun creating

cool beats. You can simultaneously play eight

37

different percussion instruments and change

their sound by loading different drum kits. Start

with one of the demo songs and get your groove

on!

Tutorials

The Tutorials category contains several very

useful guides including the Official Raspberry

Pi Educational User Manual . Other guides

include Python-SQL-Database - a tutorial on

how to create database applications using SQL

and Python plus Raspberry Invaders - a

Python programming course with 1 7 lessons

where you learn how to create a space invaders

style game using Python.

Dev Tools

This is the smallest category in the Pi Store yet it

contains useful col lections such as HUD Sprite

Pack, Effects Sprite Pack and Audio Effects

Pack for your Python and Scratch games... and

of course al l free to use.

There is also the very excel lent Pi3D, a Python

module that simplifies developing 3D worlds and

provides access to the power of the Raspberry Pi

GPU. In addition to both 3D and 2D rendering,

Pi3D can load textures, models, create fractal

landscapes and offers vertex and fragment

shaders. There are also 1 9 impressive demos.

Media

Last, but certainly not least, is the Media

category. This is where you wil l find every issue

of The MagPi - the first, and in my biased

opinion the best, magazine for the Raspberry

Pi.. . and of course it is free! There wil l typical ly

be a short lag between The MagPi being

released at the start of each month and it

appearing in the Pi Store. That is because the Pi

Store version is the same version that we use for

creating the printed version of the magazine so

we are doubly thorough with the quality control .

Conclusion

With over 2 mil l ion Raspberry Pis sold worldwide

and the Pi Store being located on the desktop of

Raspbian, it has the potential to be an incredible

resource and the "go to" place for Raspberry Pi

content. I t is easy to upload so why not share

your original programs or tutorials with others?

The Pi Store is there for your benefit and the

benefit of the community, so go use it.

To see the large range of PCSL brand Raspberry Pi accessories visit

http://www.pcslshop.com

November's Winner!
The winner of a new 51 2MB Raspberry Pi Model B plus an exclusive Whiteberry PCSL case,
1 A PSU, HDMI cable, 1 6GB NOOBS memory card, GPIO Cobbler kit, breadboard and jumper
wires is Lena Pellow (Cardiff, UK).

Congratulations. We wil l be email ing you soon with detai ls of how to claim your prizes!

This month there is one MASSIVE prize!

The winner wil l receive a new Raspberry Pi

51 2MB Model B, an exclusive Whiteberry

PCSL case, 1 A PSU, HDMI cable, 1 6GB

NOOBS memory card, GPIO Cobbler kit,

breadboard and jumper wires!

For a chance to take part in this month's

competition visit:

http://www.pcslshop.com/info/magpi

Closing date is 20th December 201 3.

Winners wil l be notified in the next issue and

by email . Good luck!

Once again The MagPi and PC Supplies Limited are proud to announce yet
another chance to win some fantastic Raspberry Pi goodies!

DECEMBER COMPETITION

38

http://www.pcslshop.com/info/magpi
http://www.pcslshop.com

Torbay Raspberry Jam

When: Saturday 1 4th December, 1 .00pm unti l 3.00pm
Where: Paignton Library and Information Centre, Great Western Road, Paignton, TQ4 5AG, UK

The first Torbay Raspberry Jam. Scratch, Python, Minecraft. http://dcglug.drogon.net/torbay-pi-jam.

Raspberry Jam Sweden, in Helsingborg

When: Saturday 4th January 201 4, 1 2.00pm unti l 4.00pm
Where: Bredgatan 1 2, at Mindpark (next to Campus), Helsingborg, Sweden

Everybody is welcome free of charge. Sign up for free tickets: http://www.raspberryjam.se. We wll serve
hot Raspberry Pie's with cold custard. Bring your own project to show or get help from other Jammers.

Want to keep up to date with al l things Raspberry Pi in your area?
Then this section of The MagPi is for you! We aim to l ist Raspberry Jam events in your area, providing

you with a Raspberry Pi calendar for the month ahead.

Are you in charge of running a Raspberry Pi event? Want to publicise it?
Email us at: editor@themagpi.com

Raspberry Pi Bake Off

When: Thursday 1 2th December 201 3, 9.00am unti l 3.30pm
Where: North Herts College, Monkswood Way, Stevenage, UK

Event for students to attend with their teachers. Workshops on networking and interaction. BYOP (Bring
your own Pi) . http://setpointbakeoff-es2.eventbrite.co.uk

Pi and Chips, Computing at School

When: Thursday 1 2th December 201 3, 9.30am unti l 1 2.30pm
Where: Nottingham Trent University - Clifton Campus, Clifton Lane, Nottingham, NG1 1 8NS, UK

Hands-on experience for teachers new to coding control using using the Picaxe and Arduino chip
systems in addition to the Raspberry Pi. http://www.eventbrite.co.uk/event/9274928561

Winchester Raspberry Jam

When: Thursday 1 2th December 201 3, 2.00pm to 5.00pm
Where: Winchester Science Centre and Planetarium, SO21 1 HZ, UK

Teachers are invited to bring along 3 interested students to turn their Raspberry Pi 's into Twitter Decks,
tweeting from the Raspberry Pi using Python. http://www.eventbrite.co.uk/event/8754828929

39

http://www.raspberryjam.se
http://dcglug.drogon.net/torbay-pi-jam
http://setpointbakeoff-es2.eventbrite.co.uk
http://www.eventbrite.co.uk/event/9274928561
http://www.eventbrite.co.uk/event/8754828929

40

SKILL LEVEL : BEGINNER

Claire Price

MagPi Writer

SONIC Pi AT CHRISTMAS
Learning to program with Sonic Pi

Good King
Wenceslas

Sonic Pi was developed by Sam Aaron and is an

excel lent, easy and creative way to learn

programming, especial ly as Ruby is embedded.

I t uses the MIDI note numbering system to play

sounds and this means you don’t have to be a

musical genius to make some music! A good

MIDI reference table can be found at

http://www.midikits.net23.net/midi_analyser/midi

_note_numbers_for_octaves.htm

Getting Started

I f you are using the latest version of NOOBS or

Raspbian Wheezy then Sonic Pi should already

be instal led. You can check this by looking to see

if you can find Sonic Pi under “Programming” in

the main menu. However, if you have older

versions of these you either need to download

the latest image fi les or you could type in the

fol lowing into your terminal:

sudo apt-get update ; sudo apt-get install sonic-pi

I t is important you update before downloading

Sonic Pi otherwise Sonic Pi won’t work.

To hear the sound generated, you wil l need

speakers or a pair headphones, if you can’t get

sound through your monitor/screen, and plug

them into the sound jack port on your Raspberry

Pi (see Rapberry Pi diagram below).

Now we have everything set up, let’s make some

music!

Making Sounds

Open up Sonic Pi. You wil l see 3 panes (see

screenshot on next page).

http://www.midikits.net23.net/midi_analyser/midi_note_numbers_for_octaves.htm

41

In the large pane type in

play 48

By typing this we are tel l ing the program you

want to play MIDI note 48, which is the

equivalent of playing a c on a piano. To hear it,

we need to press play. This is the triangle button

at the top of the page. We should hear a note and

in the output pane (which is found on the top right

of the screen) we wil l see what is happening (i .e.

note 48 is playing). I f you make a mistake while

typing in the code in, don’t worry. The bottom

right hand pane wil l show you your mistake. Try

typing in

ploy 48

and see what happens when you press play.

To create a tune we wil l want to play multiple

notes. Let’s type in the fol lowing:

play 48

play 52

play 55

Press play. You wil l notice the three notes are

played together. This is great if we want to play a

number of notes at the same time, but no good if

we want to play separate notes. So to make sure

the notes play one after another we need to type

sleep fol lowed by the number of seconds we
want to wait between notes. For instance, if we

want a 1 second wait, we would type sleep 1.
Let’s try putting this into what we have just

written.

play 48

sleep 1

play 52

sleep 0.5

play 55

Press play. Can you hear how changing the

timings between the notes changes how the

melody sounds?

Writing chords

We may want to introduce chords into our tunes.

The easiest way to do this is to use the

play_chord function:

play_chord [48,52,55]

This is tel l ing the program we want to play notes

48, 52 and 55 at the same time. By adding the

sleep function after play_chord we can

change the timings between notes (see previous

section). Try this out by typing:

play_chord [48,52,55]

sleep 1

play 52

Using loops

I f we wanted to repeat this section, we could

rewrite everything we had just typed or we could

use a loop. This is achieved by using times
do. By writing a number in front of times do we
can get the program to repeat the section that

many times. So if we write 2.times do
everything wil l be repeated twice, if we write

3.times do everything wil l be repeated 3 times
and so on. Adding end at the bottom of this

section tel ls the program we only want to repeat

this section.

2.times do

play 48

sleep 1

play 52

sleep 0.5

end

42

Press play. You should hear al l the notes played

twice in the loop.

Playing patterns

In our tune, we may have a series of notes

requiring the same timings in between, e.g.

play 48

sleep 1

play 52

sleep 1

play 55

sleep 1

There is nothing wrong with writing the code as

in the example, but we could write it another way:

play_pattern_timed [48,52,55],[1]

This is a great way to write sequences as it is

more concise and reduces the chance of error as

you do not need to repeatedly type play and
sleep. We can also use this format to shuffle,
reverse and sort the notes we want to play.

By adding .shuffle, the program wil l play the
notes in a random order:

play_pattern_timed [48,52,55].shuffle,[1]

Note the .shuffle comes after the notes. I f i t is
placed after the sleep command, i .e. [1] , then the

notes wil l be played in the exact order we have

written them. Try it and see:

play_pattern_timed [48,52,55],[1].shuffle

We can also reverse the order of the notes we

have asked the program to play by using

.reverse

play_pattern_timed [48,52,55].reverse,[1]

Again if we put .reverse after the [1] the notes
wil l be played in the order they have been typed.

We can also use .sort to order the pattern of

notes we have written. This works particularly

well i f we have written a sequence of notes in any

sequence and then decide what we real ly want is

for the notes to be played in numerical order. For

instance, we might type

play_pattern_timed [52,48,55],[1]

but we actual ly want is for the notes to be played

48,52,55. By adding .sort this can be

achieved:

play_pattern_timed [52,48,55].sort,[1]

Playing two tunes at once

When writing a tune we may want to have

multiple melodies playing at the same time, l ike

when someone is playing a piano with both their

right and left hand. To do this we use

in_thread do.

in_thread do

play 48

sleep 1

play 52

sleep 1

end

in_thread do

2.times do

play 55

sleep 1

end

end

The sections we want to use, we encapsulate in

in_thread do and end so the program knows
where to start and finish. The program wil l then

play these two sections at the same time. We

can also use other functions within the

in_thread do too, in this case 2.times do.

Changing the synth

pretty_bell is the default synth, but this can
be changed. There are a number of different of

synth sounds to choose from and these are:

dull_bell, pretty_bell (the default

43

synth), fm, beep and saw_beep. To change the
synth, we use with_synth fol lowed by the
name of the synth we want to use (in quotation

marks, “ “) , e.g.

with_synth “dull_bell”

Anything that fol lows this command wil l be

played with this synth. So let’s try it out:

with_synth “dull_bell”

play 48

You can hear the note sounds very different even

though the same note is being played. Try out the

other synths and see which you prefer.

Now let’s write a tune in Sonic Pi!

Good King Wenceslas

As it is the Christmas season, it seems like a

good idea to start by writing a Christmas carol.

Good King Wenceslas is a good carol to choose

as we can use some of the functions we have

discussed.

The first section of Good King Wenceslas is

repeated twice so let's start with

2.times do

A lot of this section is the same pattern, i .e. there

is a sequence of notes to be played with the

same timings so we can use play_pattern_timed.

Remember the indents.

play_pattern_timed [55,55,55,57,55,55],[0.5]

play 50

sleep 1

play_pattern_timed [52,50,52,54],[0.5]

play 55

sleep 1

play 55

sleep 1

Now we need to tel l the program to only repeat

this section so we type

end

Now we can finish off the rest of the tune.

play_pattern_timed [62,60,59,57,59,57],[0.5]

play 55

sleep 1

play_pattern_timed [52,50,52,54],[0.5]

play_pattern_timed [55,55],[1]

play_pattern_timed [50,50,52,54,55,55],[0.5]

play 57

sleep 1

play_pattern_timed [62,60,59,57],[0.5]

play_pattern_timed [55,60],[1]

play 55

sleep 2

So the finished tune should look something l ike

this:

2.times do

play_pattern_timed [55,55,55,57,55,55],[0.5]

play 50

sleep 1

play_pattern_timed [52,50,52,54],[0.5]

play 55

sleep 1

play 55

sleep 1

end

play_pattern_timed [62,60,59,57,59,57],[0.5]

play 55

sleep 1

play_pattern_timed [52,50,52,54],[0.5]

play_pattern_timed [55,55],[1]

play_pattern_timed [50,50,52,54,55,55],[0.5]

play 57

sleep 1

play_pattern_timed [62,60,59,57],[0.5]

play_pattern_timed [55,60],[1]

play 55

sleep 2

Congratulations you have written your first

Christmas carol!

For more information on Sonic Pi see

http://www.cl.cam.ac.uk/projects/raspberrypi/son

icpi/ and have fun creating your next tune!

http://www.cl.cam.ac.uk/projects/raspberrypi/sonicpi/

The MagPi is a trademark of The MagPi Ltd. Raspberry Pi is a trademark of the Raspberry Pi Foundation. The MagPi magazine is
collaboratively produced by an independent group of Raspberry Pi owners, and is not affiliated in any way with the Raspberry Pi
Foundation. It is prohibited to commercially produce this magazine without authorization from The MagPi Ltd. Printing for non commercial
purposes is agreeable under the Creative Commons license below. The MagPi does not accept ownership or responsibility for the content
or opinions expressed in any of the articles included in this issue. All articles are checked and tested before the release deadline is met but
some faults may remain. The reader is responsible for all consequences, both to software and hardware, following the implementation of
any of the advice or code printed. The MagPi does not claim to own any copyright licenses and all content of the articles are submitted with
the responsibility lying with that of the article writer. This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported License. To view a copy of this license, visit:

http://creativecommons.org/licenses/by-nc-sa/3.0/

Alternatively, send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041 , USA.

Feedback &Question Time
I bought a Raspberry Pi a

while ago, and other things got

in the way of my plan for

playing with it. Now that winter

is on the way and the evenings

are drawing in, I have time to

devote to returning to playing

with my Raspberry Pi. I have

downloaded and read through

some of the back issues of

your magazine, and real ly l ike

the format and contents.

Keep up the good work,

Robin

Great magazine, especial ly at

the price!

As an electronics engineer

with a bit of a background in

programming, I was amazed

when I saw the Raspberry Pi

launched at such a low price.

I am now spending al l my

spare time (which isn't that

much) bui lding bits and coding

the Raspberry Pi. Takes me

back to the 80's, ZX80, Acorn

Electron etc.

Your magazine is providing

loads of info. for me, as well as

ideas and enthusiasm.

Sincere Thanks,

Nigel

Thank you for al l your hard

work on The MagPi magazine.

You guys are doing a fantastic

job!

Thanks again for this bri l l iant

resource.

Roeland Schumacher

Just wanted to inform you that

the article (Pi Vision, Issue 1 8)

looked great! My kids are very

proud!

B.J. Rao

I was pointed towards your
magazines for help with LEDs
and motors (issue 2).

I am a complete noob to al l this
and your magazine and
personal help has helped me
greatly. I wi l l now try the
Python programs too.

I am going to be making a
YouTube video on how to set
up everything for complete
noobs and wil l also post a l ink
to your website and issue.

You've been a great help.

Thanks once again!
Chad Murphy

Many thanks for your
wonderful magazine. I t's
without question the 'must
have' accessory for the
Raspberry Pi.

Martin Hodgson

Merry Christmas and a
Happy New Year!

Don't forget our first issue
of 201 4 wil l be avai lable
onl ine in February.

