U R R R e i s s s

[53U= 27 - 9CT 204

SEIIINIEWICOPIES v [
izl gleon . |
| \ ™

- A Magazing for Raspderry Li Csers

Cizlrna Consolz Conirollars
rUZ= 5ASC
Nzt oz
Uslrny Gilt

9999999999999

G 9 9008 e, L
».,t;LA aspberry Pi iSiaitrademark of The Raspberry Pi Fouﬁﬂ'a‘p‘ ;

&5\ This magazin reated using a'Raspberry Pi co| a1,
R L m"ﬁi""ﬁ,

nitofwny.inzimze ol.gg

http://www.themagpi.com
http://www.themagpi.com

Welcome to Issue 27 of The MagPi magazine. This month's issue is packed cover to cover with
something for just about everyone!

Are you tired of controlling your Raspberry Pi with the same old mouse and keyboard? Have you ever
wished you could have the ergonomic feel of a console controller in your hands when playing some of
those retro games we have written about in past issues? If you answered yes to either of these
questions, why not take a look at Mark Routledge's fantastic article describing how to do just that.

Alec Clews talks us through the use of Git, a free version control software package that we also use
here at The MagPi to ensure that all of the team work on the most up to date copy of each issue. This is
a great read, especially if you work with any type of document or file as part of a team.

As you can see from our front cover, we return to the popular world of Minecraft in Dougie Lawson's
clever article on building QR code structures inside the game. We also have more physical computing
from ModMyPi, and a great father and son story on building and funding a Raspberry Pi project through
Kickstarter.

Of course we have not forgotten about programming. William Bell continues his popular C++ series and
we also have part three of our game programming series using FUZE BASIC. Start thinking of some
game ideas now because in the next issue we will have a game programming competition.

If you want even more from The MagPi this month then why not join us on the 11" October at the
SWAMP Fest event (see this month's Events page) where we will have our own stand. We look forward
to seeing you there.

We hope you enjoy this month's issue and don't forget to

like our Facebook page and leave a comment at
http://www.facebook.com/MagPiMagazine.

POt

Chief Editor of The MagPi
The MagPi Team
Ash Stone - Chief Editor / Administration Nick Hitch - Administration
lan McAlpine - Issue Editor / Layout / Proof Reading Colin Deady - Layout / Proof Reading
W.H. Bell - Administration / Layout Dougie Lawson - Testing
Bryan Butler - Page Design / Graphics Nick Liversidge - Proof Reading
Matt Judge - Website / Layout Age-Jan (John) Stap - Layout

Aaron Shaw - Layout

http://www.facebook.com/MagPiMagazine
mailto:editor@themagpi.com
http://www.facebook.com/MagPiMagazine

R
Contents

CHOOSE YOUR WEAPON
Connecting an XBOX360, PS3 or Wiimote controller to a Raspberry Pi

THE MATBOARD PROJECT
A story of Kickstarter, GPIO and water buckets

PHYSICAL COMPUTING
Part 3: Using an HC-SR04 ultrasonic range finder

THIS MONTH'S EVENTS GUIDE
Bristol UK, Swansea UK, Huddersfield UK, London UK

MINECRAFT PI EDITION
Build QR Code structures inside Minecraft

VERSION CONTROL
Part 1: Version control basics using Git

FUZE BASIC
Part 3: Keyboard input, animation and arrays

C++ CACHE
Part 7: Operator overloading

HAVE YOUR SAY
Send us your feedback and article ideas

http://www.themagpi.com

http://www.themagpi.com

SKILL LEVEL : INTERMEDIATE

Choose your Weapon

It is possible, and lots of fun, to use a variety of
today's modern console controllers for your
Raspberry Pi projects. They are quite easy to
install, readily available and you get quite a bit of
kit for your buck! This article describes how to
setup a Raspberry Pi to use a Microsoft® XBOX
360 gamepad (wired and wireless), a Sony®

PS3 gamepad and Nintendo® Wiimote.

For wireless devices you will need either the
XBOX gamepad wireless adapter, or for the
Wiimote and PS3 gamepad you can use an
expensive bluetooth dongle. See http://www.
elinux.org/RPi_USB_Bluetooth_adapters for

list of known working bluetooth dongles.

| have tested all the code on a Raspberry Pi
Model B, as well as on the new Model B+ board.

Before installing any of the software ensure you
are using a recent version of Raspbian and have
updated your system. At the command line enter:

sudo apt-get update
sudo apt-get upgrade

To test all of the hardware, an easy piece of
software to use on the Raspberry Pi is jstest-

gtk and the standard joystick library.

Connecting an XBOX360, PS3 or
Wiimote controller to a Raspberry Pi

CHOOSE YOUR WEAPON

Adding console game controllers

Mark Routledge

Guest Writer

Enter the following command to install the
software:

sudo apt-get install jstest-gtk joystick

This program should now show up in your
desktop ready for you to test. You will find the
link under Menu — Other — joystick testing
and configuration tool.

Once installed it should display your hardware
for example: Connecting your hardware.

A brief note about using the bluetooth adapter. |
have found these can be a little tempremental at
times, so | strong recommend connecting your
dongle directly to the Raspberry Pi and connect
any other hardware via a powered USB hub, e.g.
the excellent Raspberry Pi Hub! The bluetooth
dongle will work from a powered hub on a low
level, but the bluetooth stack may not be able to
see it.

Setting up the XBOX gamepad

First open up LXTerminal and install the required
driver for the XBOX 360 gamepad. The same
driver is used for both the wired gamepad and
wireless gamepad, using the adapter. Enter:

sudo apt-get install xboxdrv

http://www.elinux.org/RPi_USB_Bluetooth_adapters

It is possible to now use the XBOX gamepad with
a variety of Linux games by using:

sudo xboxdrv --silent

However, this does not really give you much
control over what each axis / button does. You
can use the joystick testing and
configuration tool mentioned earlier but it
can be difficult to get setup. Luckily it is possible
to configure the XBOX gamead in a variety of
ways. Each configuration requires a setup (text)
file which you provide when launching the
gamepad and driver. Through this you can turn
one of the analogue sticks into a mouse and the
buttons into keypresses etc. This will make it
usable with programs like Minecraft, Doom,
Quake3 plus all known emulators. The
possibilities are endless, and exciting.

Let us make a directory to store these setup files,
which contain the button mappings. Enter:

cd ~
mkdir XBOX
cd XBOX

Create a configuration text file called
basic_config. You can use any editor, but
nano is quick and simple. Enter:

hano basic_config

Now enter the following mappings:

This file is the Basic Definition of
the controller, allowing a deadzone.
It will run silently.

Setup the DPad as buttons and triggers.
#

[xboxdrv]

silent=true

deadzone=6000

dpad-as-button=true
trigger-as-button=true

Map the right analog stick as absolute
values (x2 and y2) and the left analog
stick as mouse relative (x1 and yl).

#

[ui-axismap]

x2=ABS_X
y2=ABS_Y
x1=REL_X:10
y1=REL_Y:-10

Map the four coloured buttons a, b, x
and y and set each one as a different
key, or equivalent joystick button.
In this case Left Shift, joystick
buttons C and A and the key C.

Map the triggers and bumpers in the
same way; lt, rt, 1b and rb.

Map the DPad du, dl, dd, dr as WASD.
Map the Back, Start and Guide (XBOX)
buttons to Home, Escape and Enter.

FHoF R R HH R R R

[ui-buttonmap]
a=KEY_LEFTSHIFT
b=BTN_C

Xx=BTN_A

y=KEY_C

#

1b=KEY_LEFT
rb=KEY_RIGHT
1t=KEY_Z
rt=KEY_SPACE

#

d1=KEY_A
dr=KEY_D
du=KEY_W
dd=KEY_S

#
guide=KEY_HOME
back=KEY_ESC
start=KEY_ENTER

Save and close the configuration file and exit
from nano by pressing the <Ctrl>+<X> keys
together, followed by the <Y> key then <Enters.

Description of the XBOX config file

This file is the basic definition of the controller,
allowing a deadzone. It will run silently, meaning
it will not output additional information to the
terminal.

The file sets up the DPad as buttons and
triggers. The next few sections are used to map
the right analogue stick as absolute values on the
x2 and y2 axes and the left analogue stick as
mouse relative values on the x1 and y1 axes.

It maps the four coloured buttons a, b, x and y
and sets each one as a different key, or
equivalent joystick button, in this case Left Shift,
joystick buttons C and A, and the C key.

It also maps the triggers and bumpers (lIt, rt, Ib,
rb) in the same way.

Finally it maps the DPad (du, dl, dd, dr) as the
classic W, A, S, D keyboard setup. It also sets
the Back, Start and Guide (XBOX) buttons to the
Home, Escape and Enter keys respectively.

You can now physically plug in your XBOX
gamepad or adapter if you have not already done
so. | recommend connecting the gamepad or
adapter for the XBOX 360 to a powered hub.

Do a quick list of USB devices to check that the
gamepad or adapter has been detected. Enter:

1susb

You should see an entry for the XBOX gamepad
or adapter similar to,

Bus 001 Device 009: ID 045e:028e Microsoft
Corp. Xbox 360 Controller

or,

Bus 001 Device 008: ID 045e:0719 Microsoft
Corp. Xbox 360 Wireless Adapter

Finally call the basic configuration mapping using
the --config switch with your configuration file:

sudo xboxdrv --config ~/XBOX/basic_config

You can run this command in the background by
adding an & at the end of the command.

At this point you can either use the command,
sudo jstest /dev/input/js@

to test the gamepad from the command line or,
startx

and select the joystick
configuration tool.

testing and

For the wired gamepad you should be connected
and up and running.

If you are using the wireless gamepad you will
have to sync it to the adapter. This is done by
pushing the Sync button on the adapter then
pushing the Sync button on the gamepad.

Note: Even though the gamepad is connected,
the XBOX pad quadrant light will continue to
flash! There is no quick or easy way to turn off
the pad once you have finished using it, other
than temporarily removing the battery pack for a
few seconds.

If you are keen to test your new setup in Python
follow the excellent tutorial provided by Rhishi
Despanda in The MagPi Issue 26, pages 12-13.

Setting up the PS3 gamepad

If you have the PS3 gamepad wired into a USB
hub with the charging cable, the Raspberry Pi
should detect the gamepad and work almost
immediately. You may have to press the "PS"
button to start though.

Alternatively you can use a bluetooth dongle.
Again, connect the bluetooth dongle directly into
one of the Raspberry Pi's USB ports, not via the
USB hub. The following drivers and settings will
only work with genuine PS3 gamepads. Cheap
imports simply do not seem to work. Save your
money and buy an official second hand PS3
gamepad!

Wired PS3 gamepad

To test a wired PS3 gamepad list the USB
devices with the command:

lsusb
You should see something similar to:

Bus 001 Device 008: ID @54c:0268 Sony
Corp. Batoh Device / PlayStation 3
Controller

Either test from the console with the command,

sudo jstest /dev/input/js0@

or,
startx

and use the joystick
configuration tool.

testing and

Wireless PS3 gamepad

Install the required libraries to start bluetooth.
This may seem like a lot, but it will save time and
bother later. Enter:

sudo apt-get install bluez-utils

sudo apt-get install bluez-compat
sudo apt-get install bluez-hcidump
sudo apt-get install checkinstall
sudo apt-get install libusb-dev

sudo apt-get install libbluetooth-dev

Next download the drivers for pairing the
bluetooth dongle to the PS3 gamepad. Enter:

sudo wget http://www.pabr.org/sixlinux/si
Xpair.c

gcc -o sixpair sixpair.c -lusb

Note: If this second command fails ensure that
you have installed 1ibusb-dev properly.

After this you should have a executable file called
sixpair.

Check that your bluetooth dongle is detected by
listing the USB devices with the command:

1susb
You should see your adapter listed, for example:
Bus 001 Device 004: ID ©0al2:0001 Cambridge

Silicon Radio, Ltd Bluetooth Dongle (HCI
mode)

Now connect your PS3 gamepad via a USB
cable to the Raspberry Pi and use sudo to
execute the sixpair file:

sudo ./sixpair

If you receive an error about hcitool then again
make sure you installed all the above packages.

The program should list two MAC addresses, but
they may not be the same. For example:

Current Bluetooth master:
00:15:83:0c:bf:eb

Setting master bd_addr to
00:1b:dc:0f:ed:b5

Run the command again and you should see:

Current Bluetooth master:
00:1b:dc:0f:ed:b5

Setting master bd_addr to
00:1b:dc:0f:ed:b5

You have successfully paired your controller with
your bluetooth dongle. We now need to install the

Sixaxis drivers required for the PS3 gamepad to
work like a joystick.

Install the Sixaxis joystick manager
We will download the latest archive and compile
it. To get the driver tarball (compressed file)

enter the following command all on one line:

sudo wget http://sourceforge.net/projects
/qtsixa/files/QtSixA%201.5.1/QtSixA-1.5.1
-src.tar.gz

Expand the driver with the command:
tar xfvz QtSixA-1.5.1-src.tar.gz
Naviagate into the driver directory:
cd QtSixA-1.5.1/sixad
Make the required driver for the Raspbian build:
sudo make

Make a directory to store different profiles for the
PS3 gamepad with the command:

sudo mkdir -p ~/var/lib/sixad/profiles

Finally, install the required driver that you have
just made. Enter:

sudo make install
sudo checkinstall

The last command automatically creates a
package for you, so you can easily uninstall it
later if you no longer need it or want to use a
different system. To uninstall, enter the
command:

sudo dpkg -r sixad

Now to test it, launch temporary a sixad daemon.

sudo sixad --start

If the gamepad is still plugged in, unplug it and
then press the "PS" button on the Dualshock
gamepad. If you feel a vibration then it works.
Congratulations!

You may not feel a vibration, but it should display
some sort of connection on the screen. For
example, you should see somethink like:

sixad-bin[6860]: Connected Sony Computer
Entertainment Wireless Controller
(04:76:6E:F1:74:3E)

Note: On both the PS3 gamepads that | have
tested, NEITHER vibrated! Although both are
correctly detected using the joystick testing
and configuration tool, one of the
gamepads shows no signs of connection (no red
flashing LEDs) while the other continuously
flashes! Both are offical "Dualshock 3" Sixaxis
gamepads, but both are also second-hand and |
cannot vouch for the working vibration as | do not
have a PS3!

To make the sixad daemon run automatically
every time you start the Raspberry Pi, enter the
following command:

sudo update-rc.d sixad defaults
To end the connection with your gamepad once
you are finished using it, run the following two
commands:

sudo sixad -stop
sudo service bluetooth stop

This will free up your PS3 gamepad and it should
return to sleep!

Nintendo Wiimote

You will need to use a bluetooth dongle. It is
recommend to always plug the bluetooth dongle
directly into one of the USB ports on the
Raspberry Pi, not the USB hub!

Ensure that the bluetooth driver is correctly
installed with the command:

sudo apt-get install bluetooth

To check the status of the bluetooth driver, enter
the command:

sudo service bluetooth status

You should see something similar to:

[ok] bluetooth is running.

If you do not see this then enter the command:
sudo service bluetooth start

Now install the CWiiD, WMInput and WMGui
packages. These are required to use a Wiimote:

sudo apt-get install python-cwiid
sudo apt-get install wminput wmgui

Run the hcitool to check the bluetooth adapter:
sudo hcitool dev

Start the Wiimote in detection mode by either

pressing the small red sync button or holding
buttons 1 and 2 on the Wiimote until the lights
flash. Now run the hcitool scan command to
locate your bluetooth Wiimote. Enter:

sudo hcitool scan

After a short period of time it should list your
Wiimote as a Nintendo RVL. For example, you
should see something like:

Scanning ...

00:1D:BC:FB:79:F0 Nintendo RVL-CNT-01

Write down whatever was displayed as the MAC
address for your Wiimote. We will use this later.

Universal input needs to be setup so it can be
used by users other than 'root' users. We will edit
the Wiimote rules using nano. Enter:

sudo nano /etc/udev/rules.d/wiimote.rules
Add the following line to the bottom of the file:
KERNEL=="uinput", MODE:="0666"

Save and close the file by pressing <Ctrl>+<X>
together, then press <Y> and <Enter>.

You need to reboot your Raspberry Pi for the
changes to take effect. Enter the command:

sudo reboot

Wiimote configuration file

We have setup and detected all the hardware.
We must now create a custom Wiimote
configuration file using nano that maps the inputs
from the Wiimote to buttons. Enter:

nano /home/pi/mywminput

Now enter the following mappings:

Setup for standard Wiimote
Wiimote.A = BTN_A

The trigger is button B.
Wiimote.B = BTN_B

Setup the DPad
Wiimote.Dpad.X = -ABS_Y

Wiimote.Dpad.Y = ABS_X
Setup the remaining buttons
Wiimote.Minus = BTN_SELECT

Wiimote.Plus = BTN_START

Wiimote.Home = BTN_MODE

Wiimote.1l = BTN_X

Wiimote.2 = BTN_Y

fommm - EOF - - - ——— -~

Save and close the file by pressing <Ctrl>+<X>
together, then press <Y> and <Enter>.

Finally it is time to test the Wiimote. Enter the
following command on one line:

sudo wminput -d -c /home/pi/mywminput
<Wiimote address> &

Replace the <Wiimote address> with the MAC
address we wrote down earlier.

The & at the end just means that this process will
keep running in the background while you do
other things... like play games!

Finally, test the Wiimote with the command:

sudo jstest /dev/input/js0

Game on!

Now that you have successfully got your
controller working why not take it for a spin using
one of the games previously mentioned, setup an
excellent emulator like Picodrive or try some
Linux games that can be easily installed. Try any
of the following games for some light relief:

sudo apt-get install abuse blobwars

sudo apt-get install frozen-bubble geki3
sudo apt-get install hex-a-hop ltris
sudo apt-get install supertux triplane
sudo apt-get install xblast-tnt xracer
sudo apt-get install xscavenger

| intend to write a follow-up article where | will
give examples of how to use each of these
different devices from within Python and Linux.

For all this and much more please visit my
Raspberry Pi documentation project at
http://goo.gl/EEQSJ [Ed: | have added this page
to my favourites!]

http://goo.gl/EEQ5J
http://goo.gl/EEQ5J

Expand your P

Stackable Raspberry Pi expansion boards and accessories

ADC-DAC P

2x 12 bit analogue to digital channels
and 2x 12 bit digital to analogue
channels.

Serial Pi

RS232 serial communication board.
Control your Raspberry Pi over RS232
or connect to external serial
accessories.

ADC Pi

8 channel analogue to digital converter.
I12C address selection allows you to add
up to 32 analogue channels to your
Raspberry Pi.

1 Wire P

1-Wire® to 12C host interface with ESD
protection diode.

RTC Pi

Real-time clock with battery backup
and 5V I2C level converter for adding
external 5V I2C devices to your
Raspberry Pi.

Servo Pi

16-channel, 12-bit PWM controller
suitable for driving LEDs and radio
control servos.

BGECUONCS UK www.abelectronics.co.uk

“

http://www.abelectronics.co.uk
http://www.abelectronics.co.uk/magpi/

(&6

WWW.OCEANOPTICS.COM

Powered by Raspberry Pi, the STS Developers Kit is the best
way to integrate spectral sensing into your application.

Measure color more accurately than the human eye, monitor solar UV levels,
prototype compact medical self diagnostic tools or monitor crops from a UAV. . Ocegn
@ Optics

The STS Developers Kit makes it easy with integrated device drivers and an easy
to access API to get going quickly.

http://www.oceanoptics.com

THE MATB

A story about Kickstarter, the
GPIO and water buckets

The beginning

When my son Matthew was 8 years old he was
introduced to the Makey Makey in school by a
team of engineers from IBM that were doing
community work. He loved the way it was easy to
develop software and connect to the real world.
He even got a trip to IBM where he was shown
the Raspberry Pi. As we talked about this at
home, | began to tell Matthew about my own
experiences with the ZX81 and ZX Spectrum. |
think these conversations got both of us
interested in getting more involved in
engineering. | had completed an engineering
degree and had worked for an electronics
manufacturer as part of the product development
team for many years, but | had not written a
single line of code since | left university.

The Raspberry Pi arrived on Matthew's 9t
birthday, complete with all the necessary
accessories and a blank SD card. To be honest,
having not done any research, the first few days
were disappointing. It took us most of the day to
install Linux and make an LED go on and off on
the expansion board we had purchased.

This was no ZX Spectrum - it was a powerful and
complex machine.

OARD PROJEC

Father and son team develop a new product

o lololalo

P 4

Matthew and Martin
Brabham
Guest Writers

After playing a few of the Python games, we
realised we wanted to do some control projects.
Matthew started searching the internet for "GPI1O
tutorials" and soon we were off to our local
electronics store to get some LEDs and switches.

The birth of an idea

From there we started controlling a few motors
with relays and somewhere along the way we
came up with the idea for a simple, easy to use
GPIO expansion board that could be used by just
about anyone.

We started on veroboard and then, after
explaining to Matthew how PCBs are designed,
we decided to go ahead and design one
ourselves.

Having looked around for software, we came
across the DesignSpark package from RS
components. This was great as it is was free,
easy to use and came with a library of basic
components. See http://www.designspark.com.

The first idea we had was that the board should
have four coloured LEDs and switches so that a
first time user without doing anything
complicated could start to write easy programs;
simulating a traffic light, for example. This would

Gz

| pES=-

http://www.designspark.com

make the board suitable for young users just
getting into computing.

However we also wanted people to be able to go
a bit further, so we included in the design four
relays and switch inputs, so that we could control
and read things in the real world.

As the Raspberry Pi has 3.3V logic and can only
supply a relatively small amount of current, we
used an Darlington pair buffer IC (ULN2803A) to
turn on the relays and also to protect the
Raspberry Pi from damage.

Sourcing the components presented many
challenges, for example finding coloured
switches, white LEDs and relays with low power
consumption.

We then had the idea to include a prototyping
area with the Raspberry Pi 12C (SDA/SCL) pins
and also space for a power input connector. We
hoped that this would make the board interesting
for both beginners and also slightly more
advanced users.

) A
P
0 0

Prototype area with DC-DC converter and Real Time Clock

Developing a product

Our Raspberry Pi could now be run from a
battery, keep the time and control things
anywhere. We were mobile!

In fact it was working so well, and was so easy to
use compared with other boards, we decided
that other people might want to use it to. A friend
of ours told me about Kickstarter and we decided
to try and raise £1500 to build 100 units.

Before we could start this project we needed to
come up with a name for the product. For a few
weeks it was called the "Brabboard" but

eventually we decided to call it the "Matboard".

Martin and Matthew in their home laboratory

The first PCB (version 1) had a few design
problems due to some confusion on the relay
manufacturers datasheet. We had connected the
relay coil in reverse. The board didn't work!

It was time to introduce my son to electronics
troubleshooting and re-work or, as he likes to call
it, "hacking". Luckily it was only a double sided
board and we were able to drill out some tracks
and add some wires! It didn't look great but it
worked, and we had a product.

However we had made a few mistakes. In
addition to the relay issue, the PCB terminal
block was too small and difficult to use. We also
had short circuits that had to be removed and the
Raspberry Pi mounting holes were too close to
the relays to be useful. Lesson learned... always
build a prototype!

We decided to design a version 2, to fix all of the
issues, add a silkscreen layer with clear labels
for each GPIO pin and also connect the switches
differently so they could be activated by either
grounding the input or by applying a voltage (up

)

to 30VDC). We ended up also routing these
through the ULN2803A. This gave the board the
ability to read sensors with output voltages down
to 2VDC. We also moved to a 4 layer PCB with
power and ground planes to improve the layout
of the board.

The new PCB took 3 weeks to arrive, as we were
using the lowest cost delivery. In fact we could
have got it in two days but that would have cost
over £400!

Launch on Kickstarter

With version 2 working and the design finished, it
was time to launch on Kickstarter. You can see
our project page at http://goo.gl/Hg1JVB.

Putting the Kickstarter project together was also
a lot of fun, especially making the ninety second
video with Matthew.

It was also incredible how quickly we started to
get enquiries and backers. Our first backer for
the project was after only ten minutes of being
live! At the beginning we were worried that we
would not get the funding, but after only four days
we had over forty backers and were two-thirds of
the way to the £1500 goal.

Along the way we had a lot of people make
suggestions and send us messages of
encouragement. One idea was that the GPIO
connector would be more usable if it was on the
other side of the board, otherwise when the
Raspberry Pi is installed on top of the Matboard
the ribbon cable would block the LEDs and
switches. Matthew and | agreed and decided that
we would incorporate this suggestion. We were
on to version 3!

A last minute change!

After a hectic few days finishing the version 3
design, we were ready to order the final
prototype PCB. At the last minute, | came up with
the idea of adding a couple of extra PCB holes
that could provide extra 0V, 5V and 3.3V

sources. | did this quickly before work and then
sent the files to the PCB manufacturer. It proved
to be a big mistake - in my rush | had connected
all of the power and ground planes together.

A week into the order, we were looking at the
PCB design when we spotted the error... it was a
horrible, sickening feeling. The PCB
manufacturer was helpful but the PCB was
already in manufacture. There was no choice but
to fix it and order another board. The PCB
company took pity on us and gave us a five day
delivery service at the three week price. It was an
expensive mistake but at least we were on track.

The Kickstarter project finished and we
exceeded our funding goal by over £1000. 105
people (mostly strangers) had backed the project
from all over the world.

Along comes the Model B+

Now it was time to deliver the finished product.
We had promised our backers that we would
ship the Matboard kits by the end of August 2014
and we had a lot to do when another hiccup
happened just before we were about to order the
components. The Raspberry Pi Foundation
announced the new Raspberry Pi Model B+. The
new Model B+ has a 40-way GPIO connector
compared to a 26-way connector on the original
Raspberry Pi. The people backing the project
were presumably owners of Raspberry Pi's with
26-way connectors, so we needed a solution that
would enable our backers to use the board and
also be useful to future customers using the
Model B+.

Fortunately the first 26 GPIO pins on the new
Model B+ have exactly the same function as the
original unit. So we decided to change the
connector on the Matboard from a shrouded type
to an open type, so that both 26-way and 40-way
cables can be used.

The Matboard will now work with the Model A,
Model B and Model B+ Raspberry Pi's.

http://goo.gl/Hg1JVB

Future plans

For the Matboard, we finished the first kits for our
105 backers at the end of September. We have
also ordered some extra kits for us to sell online
at our website http://www.wlabs.co.uk. We are
also hoping to find some other interested
companies to help us promote the Matboard.

We are always thinking about new products and
things to do with the Raspberry Pi and
electronics in general. At the moment we are
working on an LED cube with 9 LEDs on each
face that can be made to flash in sequence.
Matthew is also working on his own project that
is a bit like Skylanders™ which can have up to 2
players on the Raspberry Pi.

What we have learnt

Matthew: | have learnt about electronic
components and what they are used for on the
board. | have learnt several soldering skills and
can build a finished Matboard in 30 minutes. |
also know how to design a PCB and have
learned some programming skills like how to use
a button with the GPIO.

Martin: From what | have seen, the Raspberry
Pi has done a great job of getting Matthew
involved in electronics and programming. It is
quite fascinating to see him come up with an
idea, write the code and wire the Matboard into a
project.

The Tomato Watering Project

When we are on holiday we needed a solution to
water our tomatoes in the greenhouse. Asking
our neighbour to do this seemed too simple(!), so
we created the following setup.

The idea was to use water from a waterbutt that
is near the greenhouse with a small 12V pump.
Luckily our greenhouse is near the house, so we
were able to pick up a strong Wi-Fi signal.

It uses a Python file that is executed at 18:01
every day using crontab on the Raspberry Pi.
We then read a water level sensor that is
mounted with LEGO® bricks to determine if
there is sufficient water to start the pump cycle. If
the water level is low then a function is called to
send an alert email.

Raspberry Pi and Matboard controlling a water pump

If the water level is OK, an electronic valve opens
and the pump runs for two minutes. This is
connected to a plastic pipe with holes drilled in it,
which works surprisingly well.

After two minutes the valve closes and the pump
stops. Without the valve we found that the siphon
effect kicks in and empties the whole water butt
into the green house (something else | learnt the
hard way).

The Python code executes a command to take a
picture of the greenhouse and emails it from a
Gmail account.

The system is powered by a 24W AC-DC PSU
that delivers 12V to power the pump and valve. A
12V to 5V DC-DC converter is installed on the
prototype area, to tap off 5V for the Raspberry Pi
and Matboard.

We also used a DS1307+ Real Time Clock chip
so that if we lose the Wi-Fi connection or have
any kind of power outage, the system can still
keep time and activate at 18:01.

)

http://www.wlabs.co.uk

We plan to add a few more features, that will use
extra inputs and outputs of the Matboard over

the next few months.

Python code

#!/usr/bin/python
#
Note: you must change lines 29, 30 & 31

import RPi.GPIO as GPIO, feedparser

from time import sleep

import smtplib, os, sys

from email.mime.text import MIMEText
from email .MIMEMultipart import MIMEMulti
part

from email .MIMEImage import MIMEImage

GPIO.setwarnings(False)
GPIO.setmode(GPIO.BOARD)

Set up GPIO Inputs

Yellow Input
GPIO.setup(7, GPIO.IN)

Orange LED
GPIO.setup(12, GPIO.OUT)

#Set LEDs to Off and outputs to False
GPIO.output(12,False)

Send email message and photo from Gmail
def send_email(msg):
Change these 3 lines to your details
USERNAME = "me@gmail.com"
PASSWORD = "your Gmail password"
MAILTO = "someone@example.com"

msg['From'] = USERNAME
msg['To'] = MAILTO

msg.attach(MIMEImage(file("/home/pi/ma
gpi/water.jpg").read()))

server = smtplib.SMTP('smtp.gmail.com:5
87")

server.ehlo_or_helo_if_needed()

server.starttls(Q)

server.ehlo_or_helo_if_needed()

server.login(USERNAME, PASSWORD)

server.sendmail C(USERNAME, MAILTO, msg.a

s_string())
server.quit(Q)

print"Email sent to: " + MAILTO
return

Send email when there is no water
def Send_nowater_email():
print"No water"
msg = MIMEMultipart()
msg.attach(MIMEText('Water Butt Empty')
)
msg['Subject'] = 'Water Butt Empty’
send_email(msg)
return

Send email when greenhouse is watered
def Send_watered_email():

print"Sending image"

msg = MIMEMultipart()

msg.attach(MIMEText('Greenhouse watered
"))

msg['Subject'] = 'Greenhouse Watered'

send_email(msg)

return

Turn on the water pump

def water_plants(Q):
GPIO.output(12,True)
sleep(120)
GPIO.output(12,False)
return

Take a picture called water.jpg

def take_picture():
os.system("raspistill -o /home/pi/magpi

/water.jpg -w 1024 -h 768 -q 30")

Main control loop

while True:
Input_yellow = GPIO.input(7)
print Input_yellow

if Input_yellow == False:
water_plants()
take_picture()
Send_watered_email()

print"Wait 30 seconds"
sleep(30)

print"Exit program"
sys.exit(Q)

if Input_yellow == True:
take_picture()
Send_nowater_email()

print"Wait 30 seconds"
sleep(30)

print"Exit program"
sys.exit()

pi’? Raspberry Pi
Limited
British Edition

Kit includes 16 GB half-height SD card and much more,,

http://pi3g.com/british2014

In previous tutorials we have outlined temperature
sensing, PIR motion controllers plus buttons and
switches, all of which can plug directly into the
Raspberry Pi's GPIO ports. The HC-SR04 ultrasonic
range finder is similarly very simple to use, however
the signal it outputs needs to be converted from 5V to
3.3V so as not to damage the Raspberry Pi! We will
introduce some physics along with electronics in this
tutorial, in order to explain each step.

What you will need

HC-SR04
1kQ resistor
2kQ resistor
Jumper wires

Ultrasonic distance sensors

Sound consists of oscillating waves travelling through
a medium (such as air) with the pitch being
determined by the closeness of those waves to each
other, defined as the frequency. Only some of the
sound spectrum (the range of sound wave
frequencies) is audible to the human ear, defined as
the “acoustic” range. Very low frequency sound
below acoustic is defined as “infrasound”, with high
frequency sounds above, called “ultrasound”.

GPIO Sensing: HC-SR04
ultrasonic range finder - Part 3

SKILL LEVEL : BEGINNER

=
B

A

PHYSICAL COMPUTING
Brought to you by ModMyPi

Jacob Marsh

ModMyPi

Ultrasonic sensors are designed to sense object
proximity or range using ultrasound reflection, similar
to radar, to calculate the time it takes to reflect
ultrasound waves between the sensor and a solid
object. Ultrasound is mainly used because it is
inaudible to the human ear and is relatively accurate
within short distances. You could of course use
acoustic sound for this purpose, but you would have a
noisy robot, beeping every few seconds.

A basic ultrasonic sensor consists of one or more
ultrasonic transmitters (basically speakers), a
receiver and a control circuit. The transmitters emit a
high frequency ultrasonic sound, which bounces off
any nearby solid objects. Some of that ultrasonic
noise is reflected and detected by the receiver on the
sensor. That return signal is then processed by the
control circuit to calculate the time difference
between the signal being transmitted and received.
This time can subsequently be used, along with some
clever math, to calculate the distance between the
sensor and the reflecting object.

The HC-SR04 Ultrasonic
sensor we will be using in this
tutorial for the Raspberry Pi
has four pins: Ground (GND),
Echo Pulse Output (ECHO),

https://www.modmypi.com/shop

Trigger Pulse Input (TRIG), and 5V supply (Vcc). We
power the module using Vcc, ground it using GND
and use our Raspberry Pi to send an input signal to
TRIG, which triggers the sensor to send an ultrasonic
pulse. The pulse waves bounce off any nearby
objects and some are reflected back to the sensor.
The sensor detects these return waves and
measures the time between the trigger and returned
pulse, and then sends a 5V signal on the ECHO pin.

ECHO will be “low” (0V) until the sensor is triggered
when it receives the echo pulse. Once a return pulse
has been located ECHO is set “high” (5V) for the
duration of that pulse. Pulse duration is the full time
between the sensor outputting an ultrasonic pulse
and the return pulse being detected by the sensor
receiver. Our Python script must therefore measure
the pulse duration and then calculate the distance.

NOTE: The sensor output signal (ECHO) on the HC-
SR04 is rated at 5V. However, the input pin on the
Raspberry Pi GPIO is rated at 3.3V. Sending a 5V
signal into that unprotected 3.3V input port could
damage your Raspberry Pi, which is something we
want to avoid! We will need to use a small voltage
divider circuit, consisting of two resistors, to lower the
sensor output voltage to something our Raspberry Pi
can handle.

Voltage dividers

A voltage divider consists of two resistors (R1 and
R2) in series connected to an input voltage (Vin),
which needs to be reduced to our output voltage
(Vout). In our circuit, Vin will be ECHO, which needs
to be decreased from 5V to our Vout of 3.3V.

~_Vin The following circuit and
simple equation can be
applied to many applications
where a voltage needs to be
reduced. If you do not want
to learn how this works, just
get a 1kQ resistor and a 2kQ
resistor.

Vout =Vi i
out = vin X m
Vout_ R?2
Vin R1+R2

Without getting too deep into the math side, we only
actually need to calculate one resistor value, as it is
the dividing ratio that is important. As we know our
input voltage (5V) and our required output voltage
(3.3V), so we can use any combination of resistors to
achieve the reduction. | decided to use a 1kQ resistor
in the circuit as R1. Adding the other values to the
equation gives the following result:

33 R2
5 ~ 1000 + R2
0.66 = B
1000 + R2

0.66(1000 + R2) = R2
660 + 0.66R2 = R2
660 = 0.34R2

1941 = R2

So, we will use 1kQ for R1 and a 2kQ resistor for R2.
Assemble the circuit

We will use four pins on the Raspberry Pi for this
project: GPIO 5V [Pin 2] — Vcc (5V Power), GPIO
GND [Pin 6] - GND (0V Ground), GPIO 23 [Pin 16]
— TRIG (GPIO Output) and GPIO 24 [Pin 18] —
ECHO (GPIO Input).

GND ECHO TRIG Vee

1k
D . GPIO 5V [Pin 2]

GPIO 23 [Pin 16]

GPIO 24 [Pin 18]

GPIO GND [Pin €]

1. Plug four of your male to female jumper wires into
the pins on the HC-SR04 as follows: red — Vcc, blue
— TRIG, yellow — ECHO and black — GND.

2. Plug Vcc into the positive rail of your breadboard
and plug GND into your negative rail.

3. Plug GPIO 5V [Pin 2] into the positive rail and
GPIO GND [Pin 6] into the negative rail.

4. Plug TRIG into a blank rail and plug that rail into
GPIO 23 [Pin 16]. (You can plug TRIG directly into
GPIO 23 if you want).

5. Plug ECHO into a blank rail and link another blank
rail using R1 (1kQ resistor).

6. Link your R1 rail with the GND rail using R2 (2kQ
resistor). Leave a space between the two resistors.

7. Add GPIO 24 [Pin 18] to the rail with your R1 (1kQ
resistor). This GPIO pin needs to sit between R1 and
R2.

That's it! Our HC-SR04 sensor is connected to our
Raspberry Pi.

Sensing with Python

Now that we have connected our ultrasonic sensor to
our Raspberry Pi, we need to program a Python
script to detect distance. The ultrasonic sensor output
(ECHO) will always output low (0V) unless it has
been triggered, in which case it will output 5V (3.3V

with our voltage divider). We therefore need to set
one GPIO pin as an output, to trigger the sensor, and
one as an input to detect the ECHO voltage change.

First, import the Python GPIO library, import our time
library (so we make our Raspberry Pi wait between
steps) and set our GPIO pin numbering:

import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BCM)

Next, we name our output pin GPIO 23 (which
triggers the sensor) as TRIG and our input pin GPIO
24 (which reads the return signal) as ECHO:

TRIG
ECHO

23
24

We then print a message to let the user know that
distance measurement is in progress:

print "Distance Measurement In Progress"

Next, set the two GPIO ports as inputs and outputs
as defined previously:

GPIO.setup(TRIG, GPIO.OUT)
GPIO.setup(ECHO, GPIO.IN)

Then, ensure that the TRIG pin is set low and give
the sensor a couple of seconds to settle:

GPIO.output(TRIG, False)
print "Waiting For Sensor To Settle"
time.sleep(2)

The HC-SR04 sensor requires a short 10uS pulse to
trigger the module, which will cause the sensor to
start the ranging program (8 ultrasound bursts at 40
kHz) in order to obtain an echo response. So, to
create our trigger pulse, we set the trigger pin high for
10pS then set it low again:

GPIO.output(TRIG, True)
time.sleep(0.00001)
GPIO.output(TRIG, False)

Now that we have sent our pulse signal we need to

o)

listen to our input pin, which is connected to ECHO.
The sensor sets ECHO to high for the amount of time
it takes for the pulse to go and come back, so our
code therefore needs to measure the amount of time
that the ECHO pin stays high. We use a while loop
to ensure that each signal timestamp is recorded in
the correct order.

The time.time() function will record the latest
timestamp for a given condition. For example, if a pin
goes from low to high, and we are recording the low
condition using the time.time() function, the
recorded timestamp will be the latest time at which
that pin was low.

Our first step must therefore be to record the last low
timestamp for ECHO (pulse_start) i.e. just before
the return signal is received and the pin goes high:

while GPIO.input(ECHO) == 0:
pulse_start = time.time(Q)

Once a signal is received, the value changes from
low (0) to high (1) and the signal will remain high for
the duration of the echo pulse. We therefore also
need the last high timestamp for ECHO (pulse_end):

while GPIO.input(ECHO) == 1:
pulse_end = time.time()

We can now calculate the difference between the two
recorded timestamps and hence the duration of the
pulse (pulse_duration):

pulse_duration = pulse_end - pulse_start

Knowing the time it takes for the signal to travel to an
object and back again, we can now calculate the
distance using the following formula:

S d Distance
eced = ———
p Time

The speed of sound is variable, depending on what
medium it is travelling through, in addition to the

temperature of that medium. However, the speed of
sound at sea level is 343m/s (or 34300cm/s) so we
will use this as our baseline.

We also need to divide our time by two because what
we have calculated above is actually the time it takes
for the ultrasonic pulse to travel the distance to the
object and back again. We simply want the distance
to the object! We can simplify the calculation to be
completed in our Python script as follows:

34300 = Distance
~ Time/2

Distance

17150 = —
Time

17150 x Time = Distance

We can plug this calculation into our Python script:

distance = pulse_duration * 17150

Now we round our distance to 2 decimal places:

distance = round(distance, 2)

Then we print the distance. This command will print
the word “Distance:” followed by the distance
variable, followed by the unit “cm”:

print "Distance:", distance, "cm

Finally, we clean our GPIO pins to ensure that all
inputs and outputs are reset:

GPIO.cleanup()

Save your Python script as range_sensor.py and
run it using the following command:

sudo python range_sensor.py

http://www.modmypi.com
http://www.modmypi.com
http://www.modmypi.com

C;fwt m ﬁa '” ~ the Wo Ml
Build Your Own Contol Panel!

L
GEm— —

5]

‘Event Driven

i \‘ A S
=» New Live Controls =>» Build your pages on your iPad/iPhone
=» EASY to setup - no syncing required =>» Ten pages of control panels
=» Exchange your panels with friends =>» Supports any compu_ter that supports
=» Supports multiple Raspberry Pis and Python (windows, linux, etc.)

multiple Arduinos

Visit milocreek.com for more info!

L __MiloCreek Supports Arduino
e B with in-app purchase

The MagPi print edition

Experience hundreds of pages of Raspberry Pi hardware projects, software tutorials, reviews of the
latest expansion boards and interviews with the makers and creators involved.

Originally funded through Kickstarter, The MagPi printed bundles of Volumes 1 and 2 bring all the
information of this peer-reviewed magazine within arm's reach.

Volume 1: Issues 1-8
Volume 2: Issues 9-19

Available worldwide fom these resellers:

Interview with Eben Upton H
|\l 4\Monitoring an Aquarium Swag . raS pberryp I . Org
) Portable Raspberry Pi

Prioonoeeain WWW.Modmypi.com

Weather Station

Linux Toolshed WWW_pl-Supply.Com

Internet Radio

thepihut.com
www.adafruit.com (USA)
www.buyraspberrypi.com.au (Australia)

The MagPi is also available on special offer to schools for a limited time only:
www.themagpi.com/education

http://swag.raspberrypi.org
http://www.modmypi.com
http://www.pi-supply.com
http://thepihut.com
http://www.adafruit.com
http://www.buyraspberrypi.com.au
http://www.themagpi.com/education
http://www.milocreek.com

(

The MagPi What's On Guide

Want to keep up to date with all things Raspberry Pi in your area?
Then this section of The MagPi is for you! We aim to list Raspberry Jam events in your area, providing
you with a Raspberry Pi calendar for the month ahead.

Are you in charge of running a Raspberry Pi event? Want to publicise it?
Email us at: editor@themagpi.com

SWAMP Fest (South WAles Makers & Programmers)

%
& o When: Saturday 11th October 2014, 10.00am to 5.00pm
Where: TechHub Swansea, 11 Wind Street, Swansea, SA1 1DP, UK

Meet the coder, hacker, maker and associated groups in and around South Wales. With a large number
of talks and workshops covering Arduino, Minecraft, Qt5, 3D printing and more besides this event looks
set to be great fun and highly interesting. http://www.eventbrite.co.uk/e/12677094531.

Come and meet The MagPi on our stand. We'll have demonstrations of HDMIPi and the new Model B+
as well as various other hardware boards. In the afternoon we'll be giving a short talk about the
magazine and giving you the opportunity to ask us, well, anything you want really. We look forward to
seeing you in Swansea.

Huddersfield Raspberry Jam

When: Saturday 25th October 2014, 10.00am to 3.00pm
Where: Huddersfield Library, Princess Alexandra Walk, Huddersfield, HD1 2SU, UK

A Halloween themed Raspberry Jam! Make something Halloween themed with your Raspberry Pi and
bring it along. http://huddersfieldraspberryjam.co.uk/

London Raspberry Jam

When: 8th November 2014, 11.00am to 6.00pm
Where: Kano, 69-89 Mile End Road, London, E1 4TT, UK

A celebration of everything to do with DIY technology: soldering, 3D printing, robots, gaming, virtual
reality and more! The event is open to all ages. http://www.eventbrite.co.uk/e/13310980501

Bristol Digimakers

When: Saturday 29th November 2014, 10.30am to 4.30pm
Where: At-Bristol, Anchor Road, Bristol, BS1 5DB, UK

Digimakers is a series of technology events aimed at children (7+), teachers and parents. With lots of
workshops the event provides a great opportunity to learn about electronics and computing: from

programming to hacking hardware. https://www.facebook.com/digimakersbristol .

http://www.eventbrite.co.uk/e/13310980501
http://www.eventbrite.co.uk/e/12677094531
http://huddersfieldraspberryjam.co.uk/
https://www.facebook.com/digimakersbristol

inside Minecraft

SKILL LEVEL : BEGINNER

In this article | am going to show you how you

can dynamically display QR codes inside
Minecraft: Pi Edition. You can use these for many
ideas - from displaying clues to puzzles in your
Minecraft world to linking to websites. Readers
are also invited to read our other Minecraft
articles in Issue 11 and Issue 23.

Getting started

If you have the latest version of Raspbian then
Minecraft already comes preinstalled. If you do
not have the latest Raspbian then let's get going
by installing Minecraft and testing that it works.

Open an LXTerminal window and enter the
following commands:

cd ~

wget https://s3.amazonaws.com/assets.minecra
ft.net/pi/minecraft-pi-0.1.1.tar.gz

tar -zxvf minecraft-pi-0.1.1.tar.gz

Make a note of /home/pi/mcpi/api/python as
we will need that later. Test Minecraft with the
following commands:

cd ~/mcpi
./minecraft-pi

You should get the familiar screen for Minecraft

AIIHELRRE Y

~PI EDITION

Build QR Code structures

Dougie Lawson
MagPi Writer

and can build a new world. Have a play around
and when you are done press <TAB> to get
control of the cursor. We can switch to the
LXTerminal window and close down Minecraft by
pressing the <CTRL>+<C> keys together. We
will come back to Minecraft later when we are
ready to run the Python program that is going to
build our structure in the virtual world.

Getting QR encoder and testing your
first QR code

Although we could build our own QR code maker
in Python, to keep things very simple and give us
instant results we will use a ready built QR code
generator called grencode.

Open an LXTerminal and issue the following
commands:

sudo apt-get install grencode
grencode -t ANSI "Hello World"

We have now got a QR code displaying in our
LXTerminal window. You may need to stretch the
window size so that the white borders at the top
and bottom are visible. Get your smart phone
and scan that QR code using any QR code app
to prove that everything is working correcily.

O

The grencode program can generate QR codes
in various formats. In our Python program we are
going to generate an ASCII (plain text) format
QR code and edit the output with the stream
editor, sed. The grencode program generates
"##" for every black square and a space for every
white square in the QR code, when we use the
-t ASCIT option.

Open an LXTerminal and issue the following
complex command:

grencode -t ASCII "Hello Minecraft” | \
sed 's/ / /g' | sed 's/##/#/9' > ~/mc.qgr.txt

Note the two spaces in 's/ / /g'. We have
now generated the data that will be the input for
our Python program. Take a look at it with the
cat command or use the Leafpad editor.

Glueing it all together

To build a QR code structure in Minecraft we are
going to use the Python application programming
interface (API). That allows us to control our
Minecraft world with a program. For example, we
can discover Steve's co-ordinates (Steve is the
protagonist, i.e. your playable character) and we
can teleport Steve from one location to another.
We can also add or delete blocks in the world.

So, we have the data built from gqrencode and
sed and we have a method to read that data and

build some blocks in our Minecraft world. Let's
look at the Python program to do this. The
program is called mc.qr.py and | have stored it
in a directory called python, inside the home
directory.

First we import the sys package and add the API
directory to the system path so that Python can
find the Minecraft Python AP| packages. Note,
please choose the correct path depending if you
installed Minecraft or it came pre-installed:

#!/usr/bin/python

import sys

sys.path.insert(l, '/home/pi/mcpi/api/python")
#sys.path.insert(l, '/opt/minecraft-pi/api/
python')

Now we can import the API| packages to connect
to the Minecraft world and build blocks:

import mcpi.minecraft as mine
import mcpi.block as block

Next we create a connection and get the current
co-ordinates where Steve is standing:

mc = mine.Minecraft.create()
pPos = mc.player.getTilePos()
print "Player point:", pPos.x, pPos.y, pPos.z

Now move Steve (teleport him) twenty blocks
back, forty blocks down and twenty blocks to his
left and read his new position:

mc.player.setTilePos(pPos.x - 20, pPos.y - 40,
pPos.z - 20)
nPos = mc.player.getTilePos()

Open the input file generated by grencode and
read every line into an array:

grc = open('mc.qr.txt"', 'r')

arrayQR = []

for line in grc:
arrayQR.append(line)

grc.close()

We then initialise the variables we use to position
the blocks as we generate them in the Minecraft
world:

D)

print "Starting point:",nPos.x,nPos.y,nPos.z
X = nPos.x
y = nPos.y
z = nPos.z

The file generated by qrencode would come out
upside down if we just worked from the first
record to the last. So we need to read the last
line first (to build the left hand line of blocks) and
work backwards to the top (right hand line of
blocks). Python has the reversed() function to
read arrays from the last record to the first
record. So each time round this FOR loop, the
variable 1 is the line we are working on.

We set the starting position for the height of the
block above Steve's position to the length of
each record and work down while reading the
line from left to right. Trust me, that gets the QR
code turned through 90 degrees but it is not back
to front. QR codes have the property that you can
read them up, down, left or right (those three
large squares in the corners tell the QR code
reader how the code is oriented).

As we read the file, if the character is a space
(white square) we build a block of snow (block id
= 80) in the world. If the character is a hash
(black square) we build a block of obsidian
(block id = 49). You can find the block id codes
on the Minecraft Wiki at http:/minecraft.
gamepedia.com/Data_values/Block_IDs:

for i in reversed(arrayQR):
y = pPos.y + len(i)

for j in range(@, len(i)):
_L_F (_LI:J —_ ").
block = 80
if (i[3] == "#"):
block = 49
y=y-1
mc.setBlock(x, y, z, block)
X=x+1

Finally we teleport Steve back to his original
position:

mc.player.setPos(pPos.x, pPos.y, pPos.z)

Display the QR code in Minecraft

To get everything running we need to start
Minecraft then when it is running we start our
Python program. So we need two LXTerminal
windows. In the first LXTerminal window enter
the following commands:

cd ~/mcpi
./minecraft-pi

Login to your Minecraft world and find an area
without too much terrain (we don't want trees
blocking our view). Then press the
<ALT>+<TAB> keys together to switch to the
second LXterminal window. In that second
window enter the following commands:

cd ~/python
chmod 755 ./mc.qgr.py
./mc.qgr.py

The screen will go blank because the last few
blocks are built on top of Steve! When it is done
drive round to find your QR code in the Minecraft
world. | found | needed to build a tower of stone
(or dirt) to get Steve positioned so that the QR
code was square on and filled the top half of the
screen without any keystoning effects. | was then
able to scan it with my smart phone.

:

I'd like to thank Konrad, my 14 year old son and
Minecraft expert, for his patience and advice. |
started building the code with diamond (block id
= 57) but Konrad suggested using snow for
better contrast.

)

http://minecraft.gamepedia.com/Data_values/Block_IDs

] [spriter__Jf1
T ??\’ % -1 w0 drection: 90

ScrlptsYl:ostumes YSounds \
4

¥ &) move my servo 1 to left

N un raspistill to take a picture.

10 DOF Gyro Scratch Programming for

Compass | PiServoController & Pi-Pan
Accelerometer & a Pan-Tilt for RPi Camera

Altimeter for RPi

IServoController
6 Channel Servo Controller

PiConsole for Raspberry Pi

Access RPi Console on
\ SmartUPS LT
Uninterruptible power supply your Android or iPhone!

for Raspberry Pi u u

OpenElectrons.com £

)R THE SERIOUS PROGRAMMER

ils at www.brucesmith.info Print and eBooks available.

About Our Books

BSB books are ideal for the novice.
Starting from first principles they
lead you comfortably on your way
to becoming an accomplished
programmer. All books are fully
supported at www.brucesmith.info
with additional information,
downloads, links, hints and tips.

RISC OS PROGRAMIMING Amazon 5-Star Reviews
BEGINNERS REVE ALED All three books feamrgd here have

received 5S-star reviews from
readers on Amazon:
Excellent little book.
This is an excellent book which is
a must-buy for anyone who wants

‘With nothing other than Raspbian ~ Learn how to use the inbuilt BBC This 320-page book takes the lid ~ %© learn ho.w to program their
installed on your Raspberry Pi, BASIC Assembler to create and off RISC OS. Aimed at those Raspberry Pi.

ASSEMBLY
LANGUAGE

RASPBIAN
BEGINNERS

BRUCE SMITH

BRUCE SMITH

this book shows you how to generate machine code. Includes wishing to learn how to program This is a great book for budding
create your own machine code examples that show how to RISC OS directly but are PEQSHAnuInErs.

programs using ARM assembly integrate the flexibility of BASIC struggling with the Programmers Great book. An easy, step by step
language. With lucid descriptions, into your assembler. Later Reference Manuals or simply intro to assembly language.

Bruce Smith keeps things simple chapters introduce the GCC don’t know where to start. This Bruce has a very readable style of
and includes plenty of program Compiler and demonstrate how to book will teach you everything writing. The information is well
examples you can try for yourself use it’s features to create stand you need to know to get the most re5ented.

using the GCC Compiler. alone machine code. from RISC OS.

“This is a great book. Bruce Smith writes great books.”

http://www.openelectrons.com
http://www.brucesmith.info

Git - Part 1

SKILL LEVEL : BEGINNER

Introduction

When producing an article for The MagPi up to
five different people may work on the article, in
addition to the author. There is testing, layout,
graphics, proof reading plus edits by the Issue
Editor. To ensure that all changes are recorded
and everyone is working on the latest version, we
use a tool called Git. Git is widely used by many
organisations so it is a useful skill to have. It is
also a great tool for student projects. We asked
Alec Clews to explain how it all works.

What is Version Control?

Version Control (VC) is a common practice used
to track all the changes that occur to the files in a
project over time. It needs a Version Control
System (VCS) tool to work.

Think about how you work on a computer. You
create stuff; it might be a computer program you
are modifying, resume for a job application, a
podcast or an essay. The process we all follow is
usually the same. You create a basic version and
you improve it over time by making lots of
different changes. You might test your code,
spell check your text, add in new content, re-
structure the whole thing and so on. After you

(28)

Version control basics using

Alec Clews

Guest Writer

finish your project (and maybe release the
content to a wider audience) the material you
created can be used as the basis for a new
project. A good example is writing computer
programs, which usually consist of several
different files that make up the project. Once you
create a version you are happy with, programs
often have to be changed many times to fix bugs
or add new features. Programs are often worked
on and modified by many different people, many
of whom want to add features specific to their
needs. Things can get confusing very quickly!

Because this article is written for users of the
Raspberry Pi the examples we will use from now
on will be based on software development
projects, but remember that you can apply the
principles to any set of computer files. [Ed: For
example the Scribus files we use at The MagPi.]

How does a VCS work?

The way that a VCS works is by recording a
history of changes. What does that mean?

Every time a change is completed (for example
fixing a bug in a project) the developer decides
that a logical "save" point has been reached and
will store all the file modifications that make up
the change in the VCS database.

Author photo courtesy of Jack Cotton

The term often used for a group of changes that
belong together like this is a changeset. As well
as changing lines of code in source files there
might be changes to configuration files,
documentation, graphic files and so on.

Along with the changes to the files the developer
will be prompted by the VCS to provide a
description of the change with a commit
message which is appended to the commit log.

The process of storing the changes in the VCS
database (usually referred to as the repository
or repo for short) is called making a commit.

The hard work in making a commit is done by the
VCS - all the developer does is issue the commit
command and provide the commit message. The
VCS software calculates which files have
changed since the last commit and what has
changed. It then stores these changes, plus the
commit message, the date, time, name of the
developer (committer) and other information in
the repository.

Version Control is also sometimes referred to as
Revision Control.

Now let us add another layer. Our project might
be big enough that we are a team working on the
project together and we all make changes to the
digital files (also called assets). That will
introduce a lot of potential problems. We will now
talk about those and how a VCS can help.

Why is Version Control so important?

Imagine a software project. It might have
hundreds of files (for example source code, build
scripts, graphics, design documents, plans etc.)
and dozens of people working on the project
making different types of changes. There are
several problems that will happen:

1. Two people might be editing the same file at
once and changes can be overwritten.

2. After the project has been running for some

time it is very hard to understand how the project
has evolved and what changes have been made.
How can we locate a problem that might have
been introduced some time ago? Just fixing the
problem may not be enough - we probably also
need to to understand the change that introduced
it.

3. If two people want to change the same file one
will have to wait for the other to finish. This is
inefficient.

4. If two people are making (long running)
changes to the project it may take some time for
both sets of changes to be compatible with each
other. If the same copy of the project is being
updated with both sets of changes then the
project may not work correctly or even compile.

There are three core questions a VCS helps to
answer via the commit history and commit
messsage - what changes were made in the
past, why were they made and who made them?

Individual developers find this information useful
as part of their daily workflow and it also helps
organisations with their compliance and audit
management if needed.

There are also three core things a VCS helps do:

1. Undo a half complete or incorrect change
made in error and roll back to a previous version.

2. Recreate a snapshot of the project as it was at
some point in the past.

3. Allow two streams of changes to be made
independently of each other and then integrate
them at a later date (parallel development). This
feature depends on the specific features of the
VCS tool you are using.

You may find the article at http://tom.preston-
werner.com/2009/05/19/the-git-parable.html
useful in introducing important ideas.

)

http://tom.preston-werner.com/2009/05/19/the-git-parable.html

Types of VCS tools available

Distributed vs Centralised

Modern VCS tools work on a distributed model
(DVCS). This means that every member of the
project team keeps a complete local copy of all
the changes. The previous model, still widely
used with tools like Subversion, is centralised.
Here there is only one central database with all
the changes and team members only have a
copy of the change they are currently working on
in their local workspace.

(In version control terminology a local workspace
is often called a working copy and it will contain
a specific revision of files plus changes.)

Open source and commercial tools

There are many commercial and open source
tools available in the market. As well as the core
version control operations, different tools will
offer different combinations of features, support
and integrations.

In this article we will be using a VCS called Git, a
popular open source tool that uses a distributed
model with excellent support for parallel
development.

Summary
Version Control tools:

» Provide comprehensive historical information
about the work done on a project.

» Help prevent the loss of information (e.g. edits
being overwritten).

» Help the project team be more efficient by
using parallel development (and often integrating
with other tools such as bug tracking systems,
project build systems, project management etc.)

» Help individual developers be more efficient
with tools such as difference reports.

Example VCS operations using Git

The rest of this article will take a hands on
approach by demonstrating the use of Git to
manage a simple set of changes. You should
follow along on your own Raspberry Pi using a
new test project as explained below.

Git is a very popular DVCS originally developed
to maintain the GNU/Linux kernel source code
(the operating system that usually runs on the
Raspberry Pi). It is now used by many very large
open source projects and a lot of commercial
development teams. Git is very flexible and thus
has a reputation of being hard to use, but we are
only going to concentrate on the ten or so
commands you need to be useful day to day.

The following examples assume that you are
using Raspbian Linux on a Raspberry Pi. First
we are going to download an example Python
project called Snakes, which we will store in a
directory called snakes.

You can do that by running the following
commands from the command line or in
LXTerminal if you are using the desktop GUI:

cd ~

mkdir snakes

wget -0 game.tar.gz http://goo.gl/nB4tYe
cd snakes

tar -xzf ../game.tar.gz

If you are unfamiliar with using commands from
the terminal there is a tutorial on how to use the
Linux command line at http:/linuxcommand.org/
learning_the_shell.php.

Git setup

Make sure you have the correct tools installed by
typing the following commands:

sudo apt-get install git git-gui gitk
sudo apt-get install git-doc

Test the installation with the command:

o)

http://linuxcommand.org/learning_the_shell.php

git --version

You should see something like (or newer):

git version 1.17.10.4

Tell Git who you are. This is very important
information and is recorded in every change you
make. You must of course substitute your own
name and email address in the correct places:

git config --global user.name "My Name"
git config --global user.email "a@b.com"

Git records that information in a user
configuration file called .gitconfig in your
home directory. Note that files and directories
that are prefixed with a period (.) are hidden. If
you enter the command 1s you will not see these
files. Instead enter 1s -A to see everything.

In case you exchange files with developers
working on a Microsoft Windows, (which is highly
likely) you should also run the command:

git config --global core.autocrlf input

See https://help.github.com/articles/dealing-with-
line-endings#platform-all for further details.

More information on setting up Git can be found
at http:/git-scm.com/book/en/Getting-Started-
First-Time-Git-Setup.

Start a new project by creating a repo

The next thing we need to do is create an empty
Git database called a repo (short for repository)
inside our snakes directory. Enter:

cd snakes
git init

You should see something like:

Initialized empty Git repository in
/home/pi/snakes/.git/

Git has now created a hidden directory called

.git. Remember, use 1s -Ato seeiit.
Next we issue a git status command. Notice
that in Git all commands are typed after the word
git (e.g.git initorgit status). Enter:

git status

The output from the status command is:

On branch master

#

Initial commit

#

Untracked files:

(use "git add <file>..." to include in
what will be committed)
#

game/

helloworld.py

if.py

maths.py

variables.py

while.py

nothing added to commit but untracked
files present (use "git add" to track)

We can ignore most of the detail for now. What is
important is that Git:

1. Warns us that some files are not being
controlled (untracked) by the VCS.

2. Lists the files and directories with their status.
We will see this change as we progress further in
the example.

Add the project files to Git

Before changes are added to the repo database
we have to decide what will be in the commit.
There might be many changes in the files we are
working on, but our changset is actually only a
small number of changes.

Git has a novel solution to this called the index.
Before a file change can be committed to the
repo it is first added to the index. As well as
adding files to the index, files can also be moved
or deleted. Once all the parts of the commit are
complete, a commit command is issued.

L))

https://help.github.com/articles/dealing-with-line-endings#platform-all
http://git-scm.com/book/en/Getting-Started-First-Time-Git-Setup

The following examples are simple and for the
time being you should just expect that before a
commit is done changes are added to the index,
as the following example shows. Note the trailing
period (.) to represent the current directory and
its subdirectories:

git add .

This command does not produce any output by
default so do not be concerned if you get no
messages. If you get a message similar to,

warning: CRLF will be replaced by LF

then this is normal as some versions of the
Snakes project are provided in Windows format
text files. You can fix this with the dosZunix
utility.

If we run the git status command now we get
different output:

On branch master

#

Initial commit

#

Changes to be committed:

(use "git rm --cached <file>..." to
unstage)

#

new file: game/game0.py
new file: game/gamel.py
new file: game/game2.py
new file: game/game3.py
new file: game/game4 . py
new file: game/snake.py
new file: helloworld.py
new file: if.py

new file: maths.py

new file: variables.py
new file: while.py

This time each file that will be committed is
listed, not just the directory, and the status has
changed from untracked to new file.

Now that the file contents have been added to
the index we can commit these changes as our
first commit with the git commit command. Git
adds the files and related information to our repo

and provides a rather verbose set of messages
about what it did. Enter:

git commit -m "Initial Commit"
The output from the command should be like:

[master (root-commit) 84lae8c] Initial
Commit
11 files changed, 693 insertions(+)
create mode 100755 game/game0.py
create mode 100755 game/gamel.py
create mode 100755 game/game2.py
create mode 100755 game/game3.py
create mode 100755 game/game4.py
create mode 100755 game/snake.py
create mode 100755 helloworld.py
create mode 100755 if.py
create mode 100755 maths.py
create mode 100755 variables.py
create mode 100755 while.py

Now try the git status command again. The
output is:

On branch master
nothing to commit (working directory
clean)

This means that the contents of our working copy
are identical to the latest version stored in our
repo.

Another command worth running is git log,
which is currently very brief as we have only
have one commit. Mine looks like this:

commit 84lae8c672abac@ad9d8483fc3d68f060d9

dd5d8

Author: Pi <acdsip6l-pi@yahoo.com>

Date: Thu Aug 14 09:36:43 2014 +1000
Initial Commit

The meaning of the Author, Date and comment
field should be obvious. The commit field will be
explained later. We now have our project under
version control.

Coming up...

Next time we will see what happens when we
make some changes.

@)

Wyligdrirf
Oe e

Just drag & drop Use a browser from
blocks to create your Program and monitor Use our graphs to any device to program
applications, using your Pi from anywhere display Your sensors’ and monitor Your
Visual Programming in the Internet data Raspbeny Pi

For advanced users Wyliodrin has multiple programming languages and shell access

= @ python @ oo

nedea

www,wyliodrin,com

http://www.wyliodrin.com

IF ufo AND uf;. > rmax + 48 OR ufx < imax - +3 THEN loadSprite (“b'ack_iny
plotSprite (ufolD, -100, ufy, 0)
ufo = {

ENDIF

and arrays

SKILL LEVEL : BEGINNER

Hello once again and welcome to our FUZE
BASIC tutorial. To further our exploration into the
exciting world of BASIC we are going to get
things moving. Over the next few pages we will
add moving enemies (big rocks actually), plus
the ability to fire. Of course firing a bullet is one
thing but what happens when it hits something?

INKEY and scanKeyboard

Last month we added our player ship graphic
and some movement commands to get us
started. The movement commands need to be
explained as there is some very useful stuff going
on.

Generally the method for checking if a key has
been pressed is to use the INKEY command as
this will return the key being pressed when you
check. For example Key=INKEY will either store
the value -1 in the variable Key if no key is
pressed, or the ASCII value of the key that is
being pressed. The <Spacebar> has an ASCII
value of 32, the <A> key is 65, the <a> is 97 and
so on. You can write a simple program to help
you determine the INKEY values.

Before we get started though please
go back to the FUZE BAsIC [BCOEE
environment using the icon on the
Desktop. Then go to the Editor <F2>
and enter the following simple program:

BASIC

Raspherry &

setSrriteTrats (silv(i,

_ORi = 1410 32 “YCLE
]

Part 3: Keyboard input, animation

1Ny

Jon Silvera

Guest Writer

CYCLE
PRINT INKEY
REPEAT

RUN <F3> this and hold down different keys to
see what value they give you. Notice however
that if you hold down two keys simultaneously
only one of the numbers will be displayed. This
means we cannot read two or more keys being
pressed at the same time. This is not good for
games programming so we added a command to
FUZE BASIC to do exactly that.

To demonstrate this let's first get back to
business. Press <ESC> to exit the program and
then press <F2> twice to return to direct mode so
we can load our program. Enter:

DIR
You should see a directory called MagP1i. Enter:

CD MagPi
LOAD MagPi

Press <F2> to go to the Editor. Hopefully your
program will be as we left it but if not you might
want to go through and make sure all is as it
should be.

The full program listing is as follows:

w

// MagPi Game
PROC Setup
CYCLE
PROC CheckControls
PROC ScreenUpdate
REPEAT
END

DEF PROC CheckControls
UpKey = scanKeyboard (scanUp)
DownKey = scanKeyboard (scanDown)
LeftKey = scanKeyboard (scanlLeft)
RightKey = scanKeyboard (scanRight)
IF UpKey THEN ShipY = ShipY + 1
IF DownKey THEN ShipY = ShipY - 1
IF LeftKey THEN ShipX = ShipX - 1
IF RightKey THEN ShipX = ShipX + 1
ENDPROC

DEF PROC ScreenUpdate
plotSprite (Ship, ShipX, ShipY, @)
UPDATE

ENDPROC

DEF PROC Setup

HGR
updateMode = @
ShipX = @

ShipY = gHeight / 2

Ship = newSprite (1)

loadSprite ("Player2.bmp", Ship, @)

setSpriteTrans (Ship, 255, 0, 255)
ENDPROC

If you RUN <F3> the program you can see we
can use the cursor keys to move the ship around

the screen. This is handled using the
scanKeyboard (scanxxxx) command. The
statement RightKey = scanKeyboard

(scanRight) checks to see if the Right cursor
key is being pressed. If it is it stores a 1 in the
variable RightKey, or a 0 if it has not been
pressed. This can be applied to every key so it's
easy to check for more than one key press with a
simple IF, AND, THEN statement. Press the
<ESC> key and then <F2> to return to the editor.

gHeight and getSpriteH

We need to add a few restrictions so the player
cannot zoom off the screen. At the same time we
are going to add a simple animation to the
player's ship. First, modify the DEF PROC
CheckControls section so it is as follows:

DEF PROC CheckControls
ShipID = 1
UpKey = scanKeyboard (scanUp)
DownKey = scanKeyboard (scanDown)
LeftKey = scanKeyboard (scanLeft)
RightKey = scanKeyboard (scanRight)
IF UpKey AND ShipY <= (gHeight -
getSpriteH (Ship)) THEN
ShipY = ShipY + 4
ShipID = 2
ENDIF
IF DownKey AND ShipY >= @ THEN
ShipY = ShipY - 4
ShipID = 0
ENDIF
IF LeftKey AND ShipX >= @ THEN ShipX =
ShipX - 4
IF RightKey AND ShipX <= gWidth/2 THEN
ShipX = ShipX + 2
ENDPROC

Do not RUN it at this point as you will just get an
error.

The IF statements check to see if the ShipX or
ShipY positions are off the screen and if so they
will not allow further movement. The check IF
UpKey AND ShipY <= (gHeight -
getSpriteH (Ship)) looks much more
complicated than it is. gHeight is a system
variable that contains the maximum height of the
current screen mode and getSpriteH checks
the height of the sprite specified. We do not want
the sprite to go any lower than the bottom of the
screen, but this must take the height of the sprite
into consideration. Try removing this part of the
check to see what happens.

Adding animation

The ShipID variable is going to contain the
player sprite ID so we can display different
sprites just by changing this setting. You can
see from the above the default setting is 1 and
then depending if the Down or Up keys are
pressed it can be 0 or 2 respectively. So, we
need one graphic for Up, one for Down and a
default one for when neither Up nor Down is
pressed.

For the sake of gameplay we have also
increased the speed dramatically as the ship
now moves 4 pixels at a time, unless it is moving

I, 35)

forward where it has to work a bit harder and
move forward at only 2 pixels at a time.

Because we have introduced a new variable, we
need to change other parts too. Add this
DrawShip procedure immediately after the END
statement:

DEF PROC DrawShip
plotSprite (Ship, ShipX, ShipY, ShipID)
ENDPROC

As we are about to have a lot more going on, we
will be using separate functions for each of the
main sprites. This one specifically draws the
player's ship at the X and Y position. Change the
beginning of the program to:

// MagPi Game
PROC Setup
CYCLE
PROC CheckControls
PROC DrawShip
UPDATE
REPEAT
END

The UPDATE statement is now issued from the
main loop. This will keep things running smoothly
as everything will be updated at once. Because
of this we no longer need the ScreenUpdate
procedure so this can be deleted. Specifically,
delete the following lines:

BEFPROC—Sereentpdate

b b b

bUPBATE
ENBPROE

Nearly there. To introduce a new variable and
add the extra ship graphics update the Setup
procedure so it is the same as the following:

DEF PROC Setup

HGR
updateMode = @
ShipX = @

ShipY = gHeight / 2
Ship = newSprite (3)
loadSprite ("Playerl.bmp",
loadSprite ("Player2.bmp",

Ship,)
Ship, 1)

loadSprite ("Player3.bmp", Ship, 2)
setSpriteTrans (Ship, 255, @, 255)
ShipID = 0

ENDPROC

As you can see we have added two extra sprites.
The clever part is that only
one main sprite container is
required to hold all the
sprites for that graphic. We
use an index to determine
which one to display. The 0,
1 and 2 at the end of each
loadSprite command
determines the index value.
Then when we want to
display the sprite we use
plotSprite(Cname, x, vy,
index). You can have
many sprites indexed so
complex animations can be achieved by simply
changing the index.

Ok, now you can RUN <F3> the program. If you
get any errors you will need to go back and
debug. Just make sure everything matches the
listings provided and it should be fine. Now when
you move around with the cursor keys, things
should be much faster and best of all the ship will
change depending if it is going up or down. It is a
very simple but effective technique.

Adding enemies

It's time to add some scary monsters. Actually,
monsters would take a bit more space to cover in
this article so, we are going with rocks... but they
are big, ugly ones if that helps!

Unfortunately there is no way to avoid this next
part. We need to add a large section to the
Setup procedure to introduce our enemies. We
could have kept things very simple and just gone
for one enemy sliding across the screen at a
time, but where is the fun in that? We are going
for waves of sixteen at a time (split into two lots
of eight) at different speeds and with changing
flying patterns.

The price to pay is in the typing so, heads down
and get on with it. Add the following after the line
ShipID = @ inthe Setup procedure:

36—

EnemyMax = 63

elD = 0

EnemyID = @

EnemyX = 0

EnemyY = 0
EnemyActive = 1
EnemyVariation = 0
EnemyScore = 50
EnemySpeed = @

DIM Enemy(EnemyMax, 6)
DIM Rock(EnemyMax)

FOR num = @ TO EnemyMax CYCLE
Rock(num) = newSprite (1)
loadSprite("BigRock.bmp" ,Rock(num),®)
setSpriteTrans(Rock(nhum),255,0,255)

REPEAT

EnemyCount = @
UNTIL EnemyCount > EnemyMax CYCLE
READ EnemyX
READ EnemyY
READ EnemyVariation
READ EnemyScore
READ EnemySpeed
EnemyScore = EnemyScore * EnemySpeed
DATA 1280, 100, 3, 50, 2
DATA 1280, 500, -3, 50, 2
DATA 4000, 366, 4, 50, 3
DATA 4000, 230, -4, 50, 3
DATA 6000, 100, 6, 50, 3
DATA 6000, 500, -6, 50, 3
DATA 11000, 400, 5, 50, 4
DATA 11000, 300, -5, 50, 4

FOR num = @ TO 7 CYCLE
Enemy(EnemyCount + num, @)

Rock(EnemyCount + num)

Enemy(EnemyCount + num, 1) = EnemyX

+ num * getSpriteW (Rock(@))

Enemy(EnemyCount + num, 2)
Enemy(EnemyCount + num, 3) =

EnemyY

EnemyActive

Enemy(EnemyCount + num, 4)

EnemyVariation

Enemy(EnemyCount + num, 5)

EnemyScore

Enemy(EnemyCount + num, 6)

EnemySpeed

REPEAT

EnemyCount = EnemyCount + 8
REPEAT

ENDPROC

PROC Setup explanation

Let me explain what the lines we have added do.
The first few lines simply introduce lots of new
variables.

DIM Enemy(EnemyMax, 6)
DIM Rock(EnemyMax)

Dimension (DIM) variables are a very powerful
type of variable called an array. It allows us to
store multiple pieces of information in an index
rather than just a single number in a single
variable. Notice that Rock is a single dimension
array and Enemy is a two-dimension array. We
will talk more about arrays later.

FOR num = @ TO EnemyMax CYCLE

The FOR loop is used to fill the Rock() array
with sprite IDs, using the newSprite command,
for each of the 64 rocks.

UNTIL EnemyCount > EnemyMax CYCLE

The UNTIL loop is used to fill the Enemy() array
with the X and Y coordinates, the pattern used,
the score value and the speed of each rock.

We are using the READ and DATA commands to
easily add a whole load of information in one go.
The main loop reads each of the lines of data
and stores them in individual variables.

The enemy score is based on 50 * the enemy
speed. However we are not including that this
month so you will have to wait until next time.

FOR num = @ TO 7 CYCLE

The rocks are configured in waves of eight. This
smaller FOR loop is used to fill the Enemy()
array with information in blocks of 8 at a time.

Again, do not RUN yet as it will not work without
a few more changes.

Arrays
The array variable is very similar to using a

database where you have a record and then
various pieces of information are stored with that

N, 37

record. We have a record ID, (e.g. 1) and then
we store information within this like name,
address, post code and so on. In the case of an
array variable we can then refer to any part of
this database with a simple index command.

Looking at the picture below can you tell me the
value stored in our Enemy array at position 3, 47
Of course you can, it's -4.

0O 1 2 3 4 5 6

ID # X Pos Y Pos Active Pattern Score Speed

EnemyO| o |1280 1200 | 1 | 3 | 50 | 2

Enemy 1| 1 |1280|500 | 1 3 |50 | 3

Enemy 2| 2 |4000 (366 | 1 | 4 |5 | 3

Enemy 3| 3 [4000 230 | 1 | -4 |50 | 4

Enemy 4| 4 |6000 100 | 1 | 6 |50 | 4

Using arrays allows us to store massive amounts
of information all instantly accessible with a
simple index command. For example Speed =
Enemy(4, 6) should now make sense. Notice, as
is usual with computer programming, that
everything starts counting from zero.

Back to our program. Once again if we RUN at
this point nothing will happen as we still need to
add a few more bits elsewhere.

First we add a call to a new procedure called
DrawEnemy in the main loop:

// MagPi Game
PROC Setup
CYCLE
PROC CheckControls
PROC DrawShip
PROC DrawEnemy
UPDATE
REPEAT
END

The following code is the actual procedure.
Once again add this right after the END
statement:

DEF PROC DrawEnemy
FOR eID = @ TO EnemyMax CYCLE
IF Enemy(eID, 3) THEN
Enemy(eID, 1) = Enemy(CelD, 1) -
Enemy(eID, 6)
EY = Enemy(eID, 2) + COS
(Enemy(eID, 1)) * Enemy(eID, 4) * 10
plotSprite (Enemy(eID, 0),
Enemy(eID, 1), EY, @)
ENDIF
REPEAT
ENDPROC

RUN <F3> the program to see how things are
looking. All going well you should now have wave
after wave of very
scary rocks flying
across the screen.
Press <ESC> to stop
the program when you
have seen enough.

PROC DrawEnemy explanation

The PROC DrawEnemy section looks really
complicated but when broken down it is, as
always, easier than is first apparent.

FOR eID = @ TO EnemyMax CYCLE

When the procedure is called it sets up a FOR
LOOP to go through all 64 enemy sprites
(EnemyMax is set to 63 and as we start counting
from 0 this makes 64 in total).

IF Enemy(eID,3) THEN
Enemy(eID,1)=Enemy(eID,1)-Enemy(eID,6)

The IF statement checks if the enemy is active or
not. If it is then we reduce the X position
Enemy(elD,1) by the speed stored in
Enemy(elD,6).

EY = Enemy(eID,2) + COS (Enemy(eID,1)) *
Enemy(eID,4) * 10

| don't like this bit as it makes me sound clever,
and I'm not, but here goes. We are working out
the Y position using the cosine of the X position
(remember sine waves from Physics lessons).
This causes the Y position to go up and down.
Enemy(elD,4) gives us a variable to adjust the
strength of the wave (the height).

35—

plotSprite (Enemy(eID,@), Enemy(eID,1),
EY, @)

As the X position is always moving to the left, a
simple wave motion is formed. If you actually are
clever then you can work out ways to make very
complex patterns. Simple waves are about as
much as | can manage!

Adding fire power

Just one last thing to do this month and that is to
add the promised fire power. We are going to
keep it simple as, once again, it would take too
much space to do anything really fancy... but this
will give you something to work with.

Add a call to a new procedure -called
DrawBullet in the main loop:

// MagPi Game
PROC Setup
CYCLE
PROC CheckControls
PROC DrawShip
PROC DrawEnemy
PROC DrawBullet
UPDATE
REPEAT
END

In the CheckControls procedure we also add
new code and a call to procedure Bullet to fire
bullets:

SpaceKey = scanKeyboard (scanSpace)

IF SpaceKey AND NOT Fire THEN
PROC Bullet

I, >°)

Add the following code to the end of the DEF
PROC Setup procedure:

DIM Shot(3)

Shot(@) = newSprite (1)

loadSprite ("Bullet.bmp", Shot(@), @)
setSpriteTrans (Shot(@), 255, @, 255)
Fire = 0

Finally add the DrawBullet and Bullet
procedures directly below the END statement.
These two procedures display the bullet and
work out if it has hit anything with the
spriteCollidePP (Shot(@), 2) command.
More on this in a minute, but for now get busy
and enter the following after the END statement:

DEF PROC DrawBullet
IF Shot(l) > gWidth THEN
hideSprite (Shot(0))
Shot(3) = 0
Fire = @
ENDIF
IF Shot(3) THEN
Shot(1) = Shot(1l) + 6
plotSprite (Shot(@), Shot(l),
Shot(2), 0)
Hit = spriteCollidePP (Shot(@), 2)
IF Hit > @ AND Hit <= 64 THEN
Enemy(Hit - 1, 3) = 0
hideSprite (Hit)
hideSprite (Shot(0))
Shot(3) = 0
Fire = @
ENDIF
ENDIF
ENDPROC

DEF PROC Bullet
Fire = 1
Shot(1) = ShipX + getSpriteW (Ship) + 8
Shot(2) = ShipY + getSpriteH (Ship) / 2
- 10
Shot(3) = 1
ENDPROC

The Bullet procedure is very straightforward as
it simply works out where the bullet should
appear based on the current position of the
player's ship. The DrawBullet procedure has a
lot more going on and introduces several new
sprite commands.

First, if the bullet goes off the screen then we set
it to inactive and hide the sprite with the
hideSprite(Shot(@)) command.

Hit = spriteCollidePP(Shot(@),2) checks
the sprite to see if it is in contact with any other
sprite. If it is then it stores that sprite ID into the
variable Hit. We then check to see if the sprite
is a Rock. If so, we hide both the rock and the
bullet and set them both to inactive so we don’t
draw them again elsewhere. We also reset the
Fire variable so we can shoot again.

There are two kinds of collision detection -
spriteCollidePP(ID, accuracy) and
spriteCollide(ID). The PP stands for "pixel
perfect" so very accurate collisions can be
checked. The standard version just checks the
sprite’s bounding box.

Coming up...

That's all we have got space for this month,
actually |1 might be in trouble for taking up so
much already!

Next issue will see the final part in this series. |
hope to wrap things up with a few more
collisions, scoring plus Start and Game Over
scenes.

If you have not already noticed, in the next issue
we are, in association with the very nice people
at The MagPi, running a competition for the best
game entry submitted using FUZE BASIC on a
Raspberry Pi. Remember, you can download the
FUZE BASIC boot image and Programmer's
Reference Guide for free from the Resources
page at http://www.fuze.co.uk.

FUzZE2E00800

FJujzJES
COMPETITION

TEASER

EBUZ)Er

In the next issue, the folks at FUZE are planning
to run a FUZE BASIC programming competition,
with an incredible £500 of prizes!

First prize is the amazing FUZE T2-R kit, worth
£230. Not only does this have everything you
need to maximise your enjoyment of the
Raspberry Pi, it also includes an OWI
programmable robotic arm kit!

Second prize is the superb FUZE T2-A kit, worth
£180. Again, this contains everything you need
including a Raspberry Pi Model B, solderless
breadboard, various electronic components, SD
card with FUZE BASIC, printed Programmer's
Reference Guide and much more!

Third prize is the excellent FUZE T2-C kit for
your Raspberry Pi. Worth £80, this kit contains
the FUZE case, keyboard, integrated USB hub,
FUZE 1/0 board and power supply.
Details of the prizes can be found at
http://www.fuze.co.uk/products.

In this series you will learn everything that you
need, but if you want to give yourself a head start
you can download the FUZE BASIC
Programmer's Reference Guide from
http://www.fuze.co.uk/resources-2/.

<

http://www.fuze.co.uk/products
http://www.fuze.co.uk/resources-2/
http://www.fuze.co.uk

® “The FUZE is what Lo

F U Z E the Raspberry Pi |[ia0
was designed for” =z s

FUZE Type ll

The Ultimate Case
~ for Raspberry Pi B & the new B+

The R Register’

RETRO-GASM: “Electronics!

Metal! Screws! Resistors! Buzzers!

BASIC programming! Nostalgia! ...

And then there’s the FUZE, which takes Pi

packaging to a whole new level of functionality”
www.theregister.co.uk

Protect your Pi from physical & static damage
UK keyboard* & 4 Extra USB ports
FUZE 1/0 Board with GPIO pass-thru
Clearly labeled input output ports

2 Amp power supply and on/off switch!

Prices start from £89.99
See FUZE website for details

Adds analogue ports, 4 in & 1 out

FUZE Technology Ltd - www.fuze.co.uk * USA & German keyboard layouts are also available

©2014 FUZE & the FUZE logo are trademarks of FUZE Technologies Ltd.
+44 (O) 1 844 239 432 - CO ntaCt@fuze-Co- Uk Raspberry Pi and the Raspberry Logo are trademarks of the Raspberry Pi
Foundation and are used with permission. All rights reserved.

http://www.fuze.co.uk

|
l+sw1tchon() |

7 - Operator overloading
W. H. Bell

SKILL LEVEL : ADVANCED MagPi Writer

The values contained in simple variables, such as int or float, can be added together using the mathematical
operators that were introduced in the C Cave article in Issue 4 of The MagPi. This functionality can be extended
to objects by the principle of operator overloading. Before continuing, it may be helpful to read through the
introduction to C++ classes in Issues 23 and 24 of The MagPi.

Operators come in many shapes and sizes. There are mathematical operators, binary operators, relational
operators, pointer syntax, stream operators, etc.. Each of these can be implemented as a function that deals with
objects of a particular class. Since an operator that deals with objects is a function, the function could perform
complicated operations to load data from disk or over the network before returning the result. Hopefully, the
author of the C++ class has written sensible operator functions or provided documentation.

This tutorial introduces two simple mathematical and stream operator functions. The tutorial assumes that g++
and make have been installed. Using the latest Raspbian image, these can be installed by typing:

sudo apt-get install -y g++ make

Two-dimensional vector

The power of operator overloading can be demonstrated with a simple example of numerical operators. In some
mathematical problems one might have to use a two-dimensional vector, which has x and y components. From
Issues 23 and 24, it is clear that a class can be written that contains x and y components as data members of a
class. However, one would ideally like to be able to add vectors together or subtract them in a straight forward
manner. This can be achieved by writing functions for the operators + and -. Create a new file called
TwoVector . h and add the source code at the top of the next page. Then save the file.

G2

#ifndef TWOVECTOR_H
#define TWOVECTOR_H

class TwoVector {

public:
TwoVector(double x = @., double y = @.); // Constructor with default values
double resultant(void) const; // Resultant
double angle(void) const; // Angle of vector in x-y plane
void rotate(double theta); // Rotate the two vector about itself
TwoVector operator+(const TwoVector& twoVector) const; // Addition
TwoVector operator-(const TwoVector& twoVector) const; // Subtraction
TwoVector& operator=(const TwoVector& twoVector); // Assignment

double x(void) const { return m_x; } // Return the x component
double y(void) const { return m_y; } // Return the y component

private:
double m_x; // x component of the vector
double m_y; // y component of the vector
s

#endif

This class declaration includes three operator functions that operate on objects: to add, subtract and assign
values. The class declaration also contains a constructor. The default values given in the constructor declaration
are used if parameters are omitted when the constructor is called. There is a function to return the resultant of
the vector, a function to return the angle of the vector in the x-y plane, a function to allow the vector to be rotated
about itself and two functions that return the values of x and y components respectively. The class also contains
two private data members that are present to store the values of the x and y components of the vector.

The const keyword is carefully used, to allow appropriate usage of the objects created. For example, functions
that do not change values stored in the data members can safely be const. The const member functions are
indicated by the keyword const, which is present just before the semicolon in each const function definition.
These functions can be called from a const object of TwoVector type or from a normal object of TwoVector
type. The operator functions use const references as parameters to avoid unnecesary copy constructors and to
indicate that the operator will not change this parameter.

Now that the header file has been created, the implementation of the other member functions of the TwoVector
class is needed. Therefore, create a new file called TwoVector . cpp and add:

#include "TwoVector.h"
#include <cmath>

TwoVector: : TwoVector(double x, double y):
m_x(x), // assign the value of x to m_x
m_y(y) { // assign the value of y to m_y

ks

double TwoVector::resultant(void) const {
double r = std::pow(m_x,2) + std::pow(m_y,2); // The sum of the squares of m_x and m_y
if(r > 0.) r = std::sqrt(r); // The sqrt only makes sense for values greater than zero
return r;

}

T (@)

double TwoVector::angle(void) const {
double r = resultant(); // Get the resultant
if(r <= 0.) return 0.;
return std::acos(m_x/r); // angle in radians

}

void TwoVector: :rotate(double theta) {
double x = m_x, y = m_y; // Store the current values;
m_x = x*std::cos(theta) - y*std::sin(theta); // Rotate the x component
m_y = x*std::sin(theta) + y*std::cos(theta); // Rotate the y component

}

TwoVector TwoVector: :operator+(const TwoVector& rhs) const {
TwoVector twoVector = *this; // Copy this object using the assignment operator
twoVector.m_x += rhs.m_x; // Add the m_x value in this object to the other object
twoVector.m_y += rhs.m_y; // Add the m_y value in this object to the other object
return twoVector; // Return the resulting vector

}

TwoVector TwoVector: :operator-(const TwoVector& rhs) const {
TwoVector twoVector = *this; // Copy this object
twoVector.m_x -= rhs.m_x; // Subtract the m_x value from the other object from this class
twoVector.m_y -= rhs.m_y; // Subtract the m_y value from the other object from this class
return twoVector; // Return the resulting vector

}

TwoVector& TwoVector: :operator=(Cconst TwoVector& rhs) {
m_x = rhs.m_x; // Assign the m_x value from the other object
m_y = rhs.m_y; // Assign the m_y value from the other object
return *this; // Return the value of this object

}

When a member function or data member is private within a class definition, then it can be accessed directly by
any objects instantiated from the class but cannot be accessed from objects that are instantiated from other
classes or from functions outside class definitions. There is an exception to this, which is discussed later in this
tutorial. Writing operator functions as class member functions simplifies the content of the operator member
functions, since the private data members can be directly accessed.

The assignment operator is the simplest of the three operator functions. The values stored in the x and y
components of the vector on the right hand side (rhs) of x=y are assigned to the data members of the object
(which is on the left hand side of this equation). The this pointer is used to refer to this specific instantiation of
the class. The addition and subtraction operators use the assignment operator to create a copy of the object
before the values of the data members are changed. When the object is instantiated without arguments, the
default constructor parameters are used. Then the assignment function is called to assign the values. For the
operators + and - the equations are z=x+y and z=x-y, where all of the object types are the same, y is passed
into the member function as the const reference rhs and x refers to the object for which the member function is
called.

The final piece of C++ needed to produce a working example is the main() function. Create a new file called
main.cpp and add the C++ code at the top of the next page.

Gag)

#include "TwoVector.h"
#include <iostream>
#include <cmath>

using namespace std;

int main(Q) {
TwoVector vecl(3.,4.); // Using the 3,4,5 triangle.
TwoVector vec2 = vecl; // Copy vecl
std::cout << "vec2{x=" << vec2.x()
<< ", y=" << vec2.y() << "}" << std::endl;
std::cout << "vecl.resultant()=" << vecl.resultant() << std::endl;
std::cout << "vecZ2.angle(D=" << (vec2.angle()/M_PI)*180. << " degrees" << std::endl;
vec2.rotate(M_PI/2.0); // Rotate anti-clockwise by 9@ degrees
std: :cout << "After rotation vecZ2{x=" << vec2.x() << ", y=" << vec2.y(Q)
<< "}, vec2.angle()=" << (vec2.angle()/M_PI)*180. << " degrees" << std::endl;
vecl = vecl - vecZ;

std::cout << "vecl-vec2 = {x=" << vecl.x(Q)

" 1

<< ", y=" << vecl.y() << "}" << std::endl;
return 0;

}

The main() function makes use of the three, four, five triangle, to help to make the value of the resultant and the
angle more intuitive during debugging. The example creates a vector called vecl that has an x component of
three and a y component of four. This implies that the resultant is five. The values in vec1 are then assigned to
the values of vecZ2, which is therefore a numerical copy of the first vector. The components of vec2 are printed,
the resultant of vecl is printed and the angle in the x-y plane is printed for vec2. The function angle() returns
the value in radians, which is then converted into degrees before being printed on the screen. The vector vec2
is then rotated by 90 degrees and the resulting angle in the x-y plane is printed. Finally, vec?2 is subtracted from
vecl and the resulting x and y components are printed on the screen. Once the operator functions have been
written, the mathematical usage of the operators becomes intuitive.

To complete the example program and produce an executable that can be run, create a file called Makefile in
the same directory as the other C++ source files and add:

CC=g++
TARGET=0p
OBJECTS=main.o TwoVector.o

$CTARGET): $(OBJECTS)
@echo "** Linking Executable"
$CCCO $(OBJIECTS) -o $(TARGET)

clean:
@rm -f *.0 *~

veryclean: clean
@rm -f $(TARGET)

%.0: %.cpp

@echo "** Compiling C++ Source"
$CCC) -c $CINCFLAGS) $<

T (as)

where the lines should be indented by single tab characters and there should be no spaces in front of any other
lines. Save the file and then type make to build the executable and . /op to run it. More information on Makefiles
can be found in Issue 7 of The MagPi.

Output stream operators

In the main() function in the last example, each component of the vectors is printed by retrieving the value of the
component and then printing it to the screen. While this works, implementing these function calls in many places
can quickly become a waste of time. Therefore, writing a function that allows an object to be printed directly, e.g.

std::cout << vecl << std::endl;

may save time. Unlike the mathematical functions, this operator function is not part of the class. However, since
it relates to the class it is intuative to put it into the same header file as the TwoVector class definition. Open the
TwoVector. h header file and modify the file to include the two output stream lines given below:

friend std::ostream& operator<<(std::ostream& os, const TwoVector& vec); // New line to add

private:
double m_x; // x component of the vector
double m_y; // y component of the vector
I

std: :ostream& operator<<(std::ostream& os, const TwoVector& vec); // New line to add

Then add the 1ostream header file at the top:

#ifndef TWOVECTOR_H
#define TWOVECTOR_H
#include <iostream>

The output stream operator function is not part of the class TwoVector. To print the values stored in the
private data members of the TwoVector object, the output stream function needs to access these values.
While this is possible by calling the x() and y() functions to retrieve these values, there is a small overhead for
these function calls. Therefore, to make the code slightly simpler, the output stream function is defined as a
friend within the class declaration. This means that it will be able to access the private data members as if
they were public data members. The friend keyword can be used with classes as well as functions. The
friend keyword also enables access to protected functions or data members and private functions.

Now open the TwoVector . cpp file and at the end of the file add:

std: :ostream& operator<<(std::ostream& os, const TwoVector& vec){

os << "{" << vec.m_x << "," << vec.m_.y <<
return os;

}

b

This is the implementation that prints the values into the stream. Next, try replacing the lines in the main. cpp
file that print the components with:

std: :cout << vecl << std::endl;

)

Connect Hundreds of
Sensors to your
Raspberry Pi

BrickPi

Turn your Raspberry Pi
into a LEGO® Robot

Arduberry

Unite the Raspberry Pi
and Arduino

GoPiGo

Turn Your Raspberry Pi
into a Robot

dexterindustries.com

MagPi Readers! Use the code “MagPi14”
for a 10% discount in our store.

http://www.dexterindustries.com

The MagPi is available for FREE from http://www.themagpi.com, from The MagPi iOS
and Android apps and also from the Pi Store. However, because so many readers have
asked us to produce printed copies of the magazine, we are pleased to announce that
printed copies are now regularly available for purchase at the following Raspberry Pi
retailers...

Americas EMEA AsiaPac

AUTHENTIC

™ <

o
243
| Dy OF

Have Your Say...

The MagPi is produced by the Raspberry Pi community, for the Raspberry Pi
community. Each month we aim to educate and entertain you with exciting projects for
every skill level. We are always looking for new ideas, opinions and feedback, to help us
continue to produce the kind of magazine you want to read.

Please send your feedback to editor@themagpi.com, or post to our Facebook page at
http://www.facebook.com/MagPiMagazine, or send a tweet to @TheMagP1. Please
send your article ideas to articles@themagpi.com. We look forward to reading your
comments.

Qoge

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.themagpi.com
https://www.modmypi.com/the-magpi-magazine
http://www.pi-supply.com/product-category/books-and-magazines/the-magpi-magazine/
http://thepihut.com/collections/the-magpi-raspberry-pi-magazine
https://www.adafruit.com/index.php?main_page=adasearch&q=the+magpi
http://www.buyraspberrypi.com.au/shop/magpi-issue-16/
http://www.facebook.com/MagPiMagazine
mailto:articles@themagpi.com
http://swag.raspberrypi.org/products/magpi
mailto:editor@themagpi.com
http://twitter.com/TheMagP1

