
IISSSSUUEE 2277 -- OOCCTT 22001144

AA MMaaggaazziinnee ffoorr RRaassppbbeerrrryy PPii UUsseerrss

hhttttpp::////wwwwww..tthheemmaaggppii..ccoommRRaassppbbeerrrryy PPii iiss aa ttrraaddeemmaarrkk ooff TThhee RRaassppbbeerrrryy PPii FFoouunnddaattiioonn..
TThhiiss mmaaggaazziinnee wwaass ccrreeaatteedd uussiinngg aa RRaassppbbeerrrryy PPii ccoommppuutteerr..

GGaammee CCoonnssoollee CCoonnttrroolllleerrss

FFUUZZEE BBAASSIICC

MMaattbbooaarrdd

UUssiinngg GGiitt

BBuuiilldd QQRR ccooddeess

iinn MMiinneeccrraafftt

GGeett pprriinntteedd ccooppiieess

aatt tthheemmaaggppii..ccoomm

UUllttrraassoonniicc RRaannggee FFiinnddeerr

CC++++ OOppeerraattoorr OOvveerrllooaaddiinngg

http://www.themagpi.com
http://www.themagpi.com

Ash Stone - Chief Editor / Administration

Ian McAlpine - Issue Editor / Layout / Proof Reading

W.H. Bell - Administration / Layout

Bryan Butler - Page Design / Graphics

Matt Judge - Website / Layout

Aaron Shaw - Layout

The MagPi Team

Nick Hitch - Administration

Colin Deady - Layout / Proof Reading

Dougie Lawson - Testing

Nick Liversidge - Proof Reading

Age-Jan (John) Stap - Layout

2

27

Welcome to Issue 27 of The MagPi magazine. This month's issue is packed cover to cover with

something for just about everyone!

Are you tired of control l ing your Raspberry Pi with the same old mouse and keyboard? Have you ever

wished you could have the ergonomic feel of a console control ler in your hands when playing some of

those retro games we have written about in past issues? If you answered yes to either of these

questions, why not take a look at Mark Routledge's fantastic article describing how to do just that.

Alec Clews talks us through the use of Git, a free version control software package that we also use

here at The MagPi to ensure that al l of the team work on the most up to date copy of each issue. This is

a great read, especial ly if you work with any type of document or fi le as part of a team.

As you can see from our front cover, we return to the popular world of Minecraft in Dougie Lawson's

clever article on bui lding QR code structures inside the game. We also have more physical computing

from ModMyPi, and a great father and son story on bui lding and funding a Raspberry Pi project through

Kickstarter.

Of course we have not forgotten about programming. Wil l iam Bell continues his popular C++ series and

we also have part three of our game programming series using FUZE BASIC. Start thinking of some

game ideas now because in the next issue we wil l have a game programming competition.

I f you want even more from The MagPi this month then why not join us on the 1 1 th October at the

SWAMP Fest event (see this month's Events page) where we wil l have our own stand. We look forward

to seeing you there.

We hope you enjoy this month's issue and don't forget to

l ike our Facebook page and leave a comment at

http://www.facebook.com/MagPiMagazine.

Chief Editor of The MagPi

http://www.facebook.com/MagPiMagazine
mailto:editor@themagpi.com
http://www.facebook.com/MagPiMagazine

3

4 CHOOSE YOUR WEAPON
Connecting an XBOX360, PS3 or Wiimote control ler to a Raspberry Pi

1 2
A story of Kickstarter, GPIO and water buckets

THE MATBOARD PROJECT

Part 3: Using an HC-SR04 ultrasonic range finder
1 8 PHYSICAL COMPUTING

23
Bristol UK, Swansea UK, Huddersfield UK, London UK
THIS MONTH'S EVENTS GUIDE

24
Build QR Code structures inside Minecraft
MINECRAFT PI EDITION

42
Part 7: Operator overloading

C++ CACHE

VERSION CONTROL28
Part 1 : Version control basics using Git

Part 3: Keyboard input, animation and arrays
34 FUZE BASIC

48
Send us your feedback and article ideas
HAVE YOUR SAY

http://www.themagpi.com

ContentsContentsContents

http://www.themagpi.com

4

SKILL LEVEL : INTERMEDIATE

Mark Routledge

Guest Writer

CHOOSE YOUR WEAPON
Adding console game control lers

Connecting an XBOX360, PS3 or

Wiimote controller to a Raspberry Pi

Choose your Weapon

I t is possible, and lots of fun, to use a variety of
today's modern console control lers for your
Raspberry Pi projects. They are quite easy to
instal l , readi ly avai lable and you get quite a bit of
kit for your buck! This article describes how to
setup a Raspberry Pi to use a Microsoft® XBOX
360 gamepad (wired and wireless), a Sony®
PS3 gamepad and Nintendo® Wiimote.

For wireless devices you wil l need either the
XBOX gamepad wireless adapter, or for the
Wiimote and PS3 gamepad you can use an
expensive bluetooth dongle. See http://www.
el inux.org/RPi_USB_Bluetooth_adapters for a
l ist of known working bluetooth dongles.

I have tested al l the code on a Raspberry Pi
Model B, as well as on the new Model B+ board.

Before instal l ing any of the software ensure you
are using a recent version of Raspbian and have
updated your system. At the command line enter:

sudo apt-get update

sudo apt-get upgrade

To test al l of the hardware, an easy piece of
software to use on the Raspberry Pi is jstest-
gtk and the standard joystick l ibrary.

Enter the fol lowing command to instal l the
software:

sudo apt-get install jstest-gtk joystick

This program should now show up in your
desktop ready for you to test. You wil l find the
l ink under Menu → Other → joystick testing
and configuration tool .

Once instal led it should display your hardware
for example: Connecting your hardware.

A brief note about using the bluetooth adapter. I
have found these can be a little tempremental at
times, so I strong recommend connecting your
dongle directly to the Raspberry Pi and connect
any other hardware via a powered USB hub, e.g.
the excel lent Raspberry Pi Hub! The bluetooth
dongle wil l work from a powered hub on a low
level, but the bluetooth stack may not be able to
see it.

Setting up the XBOX gamepad

First open up LXTerminal and instal l the required
driver for the XBOX 360 gamepad. The same
driver is used for both the wired gamepad and
wireless gamepad, using the adapter. Enter:

sudo apt-get install xboxdrv

http://www.elinux.org/RPi_USB_Bluetooth_adapters

5

I t is possible to now use the XBOX gamepad with
a variety of Linux games by using:

sudo xboxdrv --silent

However, this does not real ly give you much
control over what each axis / button does. You
can use the joystick testing and
configuration tool mentioned earl ier but it
can be difficult to get setup. Lucki ly it is possible
to configure the XBOX gamead in a variety of
ways. Each configuration requires a setup (text)
fi le which you provide when launching the
gamepad and driver. Through this you can turn
one of the analogue sticks into a mouse and the
buttons into keypresses etc. This wil l make it
usable with programs like Minecraft, Doom,
Quake3 plus al l known emulators. The
possibi l i ties are endless, and exciting.

Let us make a directory to store these setup fi les,
which contain the button mappings. Enter:

cd ~

mkdir XBOX

cd XBOX

Create a configuration text fi le cal led
basic_config . You can use any editor, but
nano is quick and simple. Enter:

nano basic_config

Now enter the fol lowing mappings:

#--

This file is the Basic Definition of

the controller, allowing a deadzone.

It will run silently.

#--

Setup the DPad as buttons and triggers.

#

[xboxdrv]

silent=true

deadzone=6000

dpad-as-button=true

trigger-as-button=true

#

#--

Map the right analog stick as absolute

values (x2 and y2) and the left analog

stick as mouse relative (x1 and y1).

#

[ui-axismap]

x2=ABS_X

y2=ABS_Y

x1=REL_X: 10

y1=REL_Y: -10

#

Map the four coloured buttons a, b, x

and y and set each one as a different

key, or equivalent joystick button.

In this case Left Shift, joystick

buttons C and A and the key C.

Map the triggers and bumpers in the

same way; lt, rt, lb and rb.

Map the DPad du, dl, dd, dr as WASD.

Map the Back, Start and Guide (XBOX)

buttons to Home, Escape and Enter.

#

[ui-buttonmap]

a=KEY_LEFTSHIFT

b=BTN_C

x=BTN_A

y=KEY_C

#

lb=KEY_LEFT

rb=KEY_RIGHT

lt=KEY_Z

rt=KEY_SPACE

#

dl=KEY_A

dr=KEY_D

du=KEY_W

dd=KEY_S

#

guide=KEY_HOME

back=KEY_ESC

start=KEY_ENTER

#--------------- EOF --------------------

Save and close the configuration fi le and exit
from nano by pressing the <Ctrl>+<X> keys
together, fol lowed by the <Y> key then <Enter>.

Description of the XBOX config file

This fi le is the basic definition of the control ler,
al lowing a deadzone. I t wi l l run si lently, meaning
it wi l l not output additional information to the
terminal.

The fi le sets up the DPad as buttons and
triggers. The next few sections are used to map
the right analogue stick as absolute values on the
x2 and y2 axes and the left analogue stick as
mouse relative values on the x1 and y1 axes.

6

I t maps the four coloured buttons a, b, x and y
and sets each one as a different key, or
equivalent joystick button, in this case Left Shift,
joystick buttons C and A, and the C key.

I t also maps the triggers and bumpers (lt, rt, lb,
rb) in the same way.

Final ly it maps the DPad (du, dl, dd, dr) as the
classic W, A, S, D keyboard setup. I t also sets
the Back, Start and Guide (XBOX) buttons to the
Home, Escape and Enter keys respectively.

You can now physical ly plug in your XBOX
gamepad or adapter if you have not already done
so. I recommend connecting the gamepad or
adapter for the XBOX 360 to a powered hub.

Do a quick l ist of USB devices to check that the
gamepad or adapter has been detected. Enter:

lsusb

You should see an entry for the XBOX gamepad
or adapter simi lar to,

Bus 001 Device 009: ID 045e: 028e Microsoft

Corp. Xbox 360 Controller

or,

Bus 001 Device 008: ID 045e: 0719 Microsoft

Corp. Xbox 360 Wireless Adapter

Final ly cal l the basic configuration mapping using
the --config switch with your configuration fi le:

sudo xboxdrv --config ~/XBOX/basic_config

You can run this command in the background by
adding an & at the end of the command.

At this point you can either use the command,

sudo jstest /dev/input/js0

to test the gamepad from the command line or,

startx

and select the joystick testing and
configuration tool .

For the wired gamepad you should be connected
and up and running.

I f you are using the wireless gamepad you wil l
have to sync it to the adapter. This is done by
pushing the Sync button on the adapter then
pushing the Sync button on the gamepad.

Note: Even though the gamepad is connected,
the XBOX pad quadrant l ight wil l continue to
flash! There is no quick or easy way to turn off
the pad once you have finished using it, other
than temporari ly removing the battery pack for a
few seconds.

I f you are keen to test your new setup in Python
fol low the excel lent tutorial provided by Rhishi
Despanda in The MagPi Issue 26, pages 1 2-1 3.

Setting up the PS3 gamepad

I f you have the PS3 gamepad wired into a USB
hub with the charging cable, the Raspberry Pi
should detect the gamepad and work almost
immediately. You may have to press the "PS"
button to start though.

Alternatively you can use a bluetooth dongle.
Again, connect the bluetooth dongle directly into
one of the Raspberry Pi 's USB ports, not via the
USB hub. The fol lowing drivers and settings wil l
only work with genuine PS3 gamepads. Cheap
imports simply do not seem to work. Save your
money and buy an official second hand PS3
gamepad!

Wired PS3 gamepad

To test a wired PS3 gamepad list the USB
devices with the command:

lsusb

You should see something similar to:

Bus 001 Device 008: ID 054c: 0268 Sony

Corp. Batoh Device / PlayStation 3

Controller

Either test from the console with the command,

sudo jstest /dev/input/js0

7

or,

startx

and use the joystick testing and
configuration tool .

Wireless PS3 gamepad

Instal l the required l ibraries to start bluetooth.
This may seem like a lot, but it wi l l save time and
bother later. Enter:

sudo apt-get install bluez-utils

sudo apt-get install bluez-compat

sudo apt-get install bluez-hcidump

sudo apt-get install checkinstall

sudo apt-get install libusb-dev

sudo apt-get install libbluetooth-dev

Next download the drivers for pairing the
bluetooth dongle to the PS3 gamepad. Enter:

sudo wget http: //www. pabr. org/sixlinux/si

xpair. c

gcc -o sixpair sixpair. c -lusb

Note: I f this second command fai ls ensure that
you have instal led libusb-dev properly.

After this you should have a executable fi le cal led
sixpair .

Check that your bluetooth dongle is detected by
l isting the USB devices with the command:

lsusb

You should see your adapter l isted, for example:

Bus 001 Device 004: ID 0a12: 0001 Cambridge

Silicon Radio, Ltd Bluetooth Dongle (HCI

mode)

Now connect your PS3 gamepad via a USB
cable to the Raspberry Pi and use sudo to
execute the sixpair fi le:

sudo . /sixpair

I f you receive an error about hcitool then again
make sure you instal led al l the above packages.

The program should l ist two MAC addresses, but
they may not be the same. For example:

Current Bluetooth master:

00: 15: 83: 0c: bf: eb

Setting master bd_addr to

00: 1b: dc: 0f: ed: b5

Run the command again and you should see:

Current Bluetooth master:

00: 1b: dc: 0f: ed: b5

Setting master bd_addr to

00: 1b: dc: 0f: ed: b5

You have successful ly paired your control ler with
your bluetooth dongle. We now need to instal l the
Sixaxis drivers required for the PS3 gamepad to
work l ike a joystick.

Install the Sixaxis joystick manager

We wil l download the latest archive and compile
it. To get the driver tarbal l (compressed fi le)
enter the fol lowing command all on one l ine:

sudo wget http: //sourceforge. net/projects

/qtsixa/files/QtSixA%201. 5. 1/QtSixA-1. 5. 1

-src. tar. gz

Expand the driver with the command:

tar xfvz QtSixA-1. 5. 1-src. tar. gz

Naviagate into the driver directory:

cd QtSixA-1. 5. 1/sixad

Make the required driver for the Raspbian bui ld:

sudo make

Make a directory to store different profi les for the
PS3 gamepad with the command:

sudo mkdir -p ~/var/lib/sixad/profiles

Final ly, instal l the required driver that you have
just made. Enter:

8

sudo make install

sudo checkinstall

The last command automatical ly creates a
package for you, so you can easi ly uninstal l i t
later if you no longer need it or want to use a
different system. To uninstal l , enter the
command:

sudo dpkg -r sixad

Now to test it, launch temporary a sixad daemon.

sudo sixad --start

I f the gamepad is sti l l plugged in, unplug it and
then press the "PS" button on the Dualshock
gamepad. I f you feel a vibration then it works.
Congratulations!

You may not feel a vibration, but it should display
some sort of connection on the screen. For
example, you should see somethink l ike:

sixad-bin[6860] : Connected Sony Computer

Entertainment Wireless Controller

(04: 76: 6E: F1: 74: 3E)

Note: On both the PS3 gamepads that I have
tested, NEITHER vibrated! Although both are
correctly detected using the joystick testing
and configuration tool , one of the
gamepads shows no signs of connection (no red
flashing LEDs) whi le the other continuously
flashes! Both are offical "Dualshock 3" Sixaxis
gamepads, but both are also second-hand and I
cannot vouch for the working vibration as I do not
have a PS3!

To make the sixad daemon run automatical ly
every time you start the Raspberry Pi, enter the
fol lowing command:

sudo update-rc. d sixad defaults

To end the connection with your gamepad once
you are finished using it, run the fol lowing two
commands:

sudo sixad -stop

sudo service bluetooth stop

This wil l free up your PS3 gamepad and it should
return to sleep!

Nintendo Wiimote

You wil l need to use a bluetooth dongle. I t is
recommend to always plug the bluetooth dongle
directly into one of the USB ports on the
Raspberry Pi, not the USB hub!

Ensure that the bluetooth driver is correctly
instal led with the command:

sudo apt-get install bluetooth

To check the status of the bluetooth driver, enter
the command:

sudo service bluetooth status

You should see something similar to:

[ok] bluetooth is running.

I f you do not see this then enter the command:

sudo service bluetooth start

Now instal l the CWiiD, WMInput and WMGui
packages. These are required to use a Wiimote:

sudo apt-get install python-cwiid

sudo apt-get install wminput wmgui

Run the hcitool to check the bluetooth adapter:

sudo hcitool dev

Start the Wiimote in detection mode by either

9

pressing the small red sync button or holding
buttons 1 and 2 on the Wiimote unti l the l ights
flash. Now run the hcitool scan command to
locate your bluetooth Wiimote. Enter:

sudo hcitool scan

After a short period of time it should l ist your
Wiimote as a Nintendo RVL. For example, you
should see something l ike:

Scanning . . .

00: 1D: BC: FB: 79: F0 Nintendo RVL-CNT-01

Write down whatever was displayed as the MAC
address for your Wiimote. We wil l use this later.

Universal input needs to be setup so it can be
used by users other than 'root' users. We wil l edit
the Wiimote rules using nano. Enter:

sudo nano /etc/udev/rules. d/wiimote. rules

Add the fol lowing l ine to the bottom of the fi le:

KERNEL=="uinput", MODE: ="0666"

Save and close the fi le by pressing <Ctrl>+<X>
together, then press <Y> and <Enter>.

You need to reboot your Raspberry Pi for the
changes to take effect. Enter the command:

sudo reboot

Wiimote configuration file

We have setup and detected al l the hardware.
We must now create a custom Wiimote
configuration fi le using nano that maps the inputs
from the Wiimote to buttons. Enter:

nano /home/pi/mywminput

Now enter the fol lowing mappings:

Setup for standard Wiimote

Wiimote. A = BTN_A

The trigger is button B.

Wiimote. B = BTN_B

Setup the DPad

Wiimote. Dpad. X = -ABS_Y

Wiimote. Dpad. Y = ABS_X

Setup the remaining buttons

Wiimote. Minus = BTN_SELECT

Wiimote. Plus = BTN_START

Wiimote. Home = BTN_MODE

Wiimote. 1 = BTN_X

Wiimote. 2 = BTN_Y

#--------------- EOF --------------------

Save and close the fi le by pressing <Ctrl>+<X>
together, then press <Y> and <Enter>.

Final ly it is time to test the Wiimote. Enter the
fol lowing command on one line:

sudo wminput -d -c /home/pi/mywminput

<Wiimote address> &

Replace the <Wiimote address> with the MAC
address we wrote down earl ier.

The & at the end just means that this process wil l
keep running in the background while you do
other things.. . l ike play games!

Final ly, test the Wiimote with the command:

sudo jstest /dev/input/js0

Game on!

Now that you have successful ly got your
control ler working why not take it for a spin using
one of the games previously mentioned, setup an
excel lent emulator l ike Picodrive or try some
Linux games that can be easi ly instal led. Try any
of the fol lowing games for some light rel ief:

sudo apt-get install abuse blobwars

sudo apt-get install frozen-bubble geki3

sudo apt-get install hex-a-hop ltris

sudo apt-get install supertux triplane

sudo apt-get install xblast-tnt xracer

sudo apt-get install xscavenger

I intend to write a fol low-up article where I wi l l
give examples of how to use each of these
different devices from within Python and Linux.

For al l this and much more please visit my
Raspberry Pi documentation project at
http://goo.gl/EEQ5J [Ed: I have added this page
to my favourites!]

http://goo.gl/EEQ5J
http://goo.gl/EEQ5J

http://www.abelectronics.co.uk
http://www.abelectronics.co.uk/magpi/

http://www.oceanoptics.com

1 2

Matthew and Martin
Brabham

Guest Writers

THE MATBOARD PROJECT
Father and son team develop a new product

A story about Kickstarter, the
GPIO and water buckets

The beginning

When my son Matthew was 8 years old he was

introduced to the Makey Makey in school by a

team of engineers from IBM that were doing

community work. He loved the way it was easy to

develop software and connect to the real world.

He even got a trip to IBM where he was shown

the Raspberry Pi. As we talked about this at

home, I began to tel l Matthew about my own

experiences with the ZX81 and ZX Spectrum. I

think these conversations got both of us

interested in getting more involved in

engineering. I had completed an engineering

degree and had worked for an electronics

manufacturer as part of the product development

team for many years, but I had not written a

single l ine of code since I left university.

The Raspberry Pi arrived on Matthew's 9th

birthday, complete with al l the necessary

accessories and a blank SD card. To be honest,

having not done any research, the first few days

were disappointing. I t took us most of the day to

instal l Linux and make an LED go on and off on

the expansion board we had purchased.

This was no ZX Spectrum - it was a powerful and

complex machine.

After playing a few of the Python games, we

realised we wanted to do some control projects.

Matthew started searching the internet for "GPIO

tutorials" and soon we were off to our local

electronics store to get some LEDs and switches.

The birth of an idea

From there we started control l ing a few motors

with relays and somewhere along the way we

came up with the idea for a simple, easy to use

GPIO expansion board that could be used by just

about anyone.

We started on veroboard and then, after

explaining to Matthew how PCBs are designed,

we decided to go ahead and design one

ourselves.

Having looked around for software, we came

across the DesignSpark package from RS

components. This was great as it is was free,

easy to use and came with a l ibrary of basic

components. See http://www.designspark.com.

The first idea we had was that the board should

have four coloured LEDs and switches so that a

first time user without doing anything

complicated could start to write easy programs;

simulating a traffic l ight, for example. This would

http://www.designspark.com

1 3

make the board suitable for young users just

getting into computing.

However we also wanted people to be able to go

a bit further, so we included in the design four

relays and switch inputs, so that we could control

and read things in the real world.

As the Raspberry Pi has 3.3V logic and can only

supply a relatively small amount of current, we

used an Darl ington pair buffer IC (ULN2803A) to

turn on the relays and also to protect the

Raspberry Pi from damage.

Sourcing the components presented many

challenges, for example finding coloured

switches, white LEDs and relays with low power

consumption.

We then had the idea to include a prototyping

area with the Raspberry Pi I2C (SDA/SCL) pins

and also space for a power input connector. We

hoped that this would make the board interesting

for both beginners and also sl ightly more

advanced users.

Developing a product

Our Raspberry Pi could now be run from a

battery, keep the time and control things

anywhere. We were mobile!

In fact it was working so well , and was so easy to

use compared with other boards, we decided

that other people might want to use it to. A friend

of ours told me about Kickstarter and we decided

to try and raise £1 500 to bui ld 1 00 units.

Before we could start this project we needed to

come up with a name for the product. For a few

weeks it was called the "Brabboard" but

eventual ly we decided to cal l i t the "Matboard".

The first PCB (version 1) had a few design

problems due to some confusion on the relay

manufacturers datasheet. We had connected the

relay coi l in reverse. The board didn't work!

I t was time to introduce my son to electronics

troubleshooting and re-work or, as he l ikes to cal l

i t, "hacking". Lucki ly it was only a double sided

board and we were able to dri l l out some tracks

and add some wires! I t didn't look great but it

worked, and we had a product.

However we had made a few mistakes. In

addition to the relay issue, the PCB terminal

block was too small and difficult to use. We also

had short circuits that had to be removed and the

Raspberry Pi mounting holes were too close to

the relays to be useful. Lesson learned... always

bui ld a prototype!

We decided to design a version 2, to fix al l of the

issues, add a si lkscreen layer with clear labels

for each GPIO pin and also connect the switches

differently so they could be activated by either

grounding the input or by applying a voltage (up

Martin and Matthew in their home laboratory

Prototype area with DC-DC converter and Real Time Clock

1 4

to 30VDC). We ended up also routing these

through the ULN2803A. This gave the board the

abi l i ty to read sensors with output voltages down

to 2VDC. We also moved to a 4 layer PCB with

power and ground planes to improve the layout

of the board.

The new PCB took 3 weeks to arrive, as we were

using the lowest cost del ivery. In fact we could

have got it in two days but that would have cost

over £400!

Launch on Kickstarter

With version 2 working and the design finished, it

was time to launch on Kickstarter. You can see

our project page at http://goo.gl/Hg1 JVB.

Putting the Kickstarter project together was also

a lot of fun, especial ly making the ninety second

video with Matthew.

I t was also incredible how quickly we started to

get enquiries and backers. Our first backer for

the project was after only ten minutes of being

l ive! At the beginning we were worried that we

would not get the funding, but after only four days

we had over forty backers and were two-thirds of

the way to the £1 500 goal.

Along the way we had a lot of people make

suggestions and send us messages of

encouragement. One idea was that the GPIO

connector would be more usable if i t was on the

other side of the board, otherwise when the

Raspberry Pi is instal led on top of the Matboard

the ribbon cable would block the LEDs and

switches. Matthew and I agreed and decided that

we would incorporate this suggestion. We were

on to version 3!

A last minute change!

After a hectic few days finishing the version 3

design, we were ready to order the final

prototype PCB. At the last minute, I came up with

the idea of adding a couple of extra PCB holes

that could provide extra 0V, 5V and 3.3V

sources. I did this quickly before work and then

sent the fi les to the PCB manufacturer. I t proved

to be a big mistake - in my rush I had connected

al l of the power and ground planes together.

A week into the order, we were looking at the

PCB design when we spotted the error.. . i t was a

horrible, sickening feel ing. The PCB

manufacturer was helpful but the PCB was

already in manufacture. There was no choice but

to fix it and order another board. The PCB

company took pity on us and gave us a five day

delivery service at the three week price. I t was an

expensive mistake but at least we were on track.

The Kickstarter project finished and we

exceeded our funding goal by over £1 000. 1 05

people (mostly strangers) had backed the project

from all over the world.

Along comes the Model B+

Now it was time to del iver the finished product.

We had promised our backers that we would

ship the Matboard kits by the end of August 201 4

and we had a lot to do when another hiccup

happened just before we were about to order the

components. The Raspberry Pi Foundation

announced the new Raspberry Pi Model B+. The

new Model B+ has a 40-way GPIO connector

compared to a 26-way connector on the original

Raspberry Pi. The people backing the project

were presumably owners of Raspberry Pi 's with

26-way connectors, so we needed a solution that

would enable our backers to use the board and

also be useful to future customers using the

Model B+.

Fortunately the first 26 GPIO pins on the new

Model B+ have exactly the same function as the

original unit. So we decided to change the

connector on the Matboard from a shrouded type

to an open type, so that both 26-way and 40-way

cables can be used.

The Matboard wil l now work with the Model A,

Model B and Model B+ Raspberry Pi 's.

http://goo.gl/Hg1JVB

1 5

Future plans

For the Matboard, we finished the first kits for our

1 05 backers at the end of September. We have

also ordered some extra kits for us to sel l onl ine

at our website http://www.wlabs.co.uk. We are

also hoping to find some other interested

companies to help us promote the Matboard.

We are always thinking about new products and

things to do with the Raspberry Pi and

electronics in general. At the moment we are

working on an LED cube with 9 LEDs on each

face that can be made to flash in sequence.

Matthew is also working on his own project that

is a bit l ike Skylanders™ which can have up to 2

players on the Raspberry Pi.

What we have learnt

Matthew: I have learnt about electronic

components and what they are used for on the

board. I have learnt several soldering ski l ls and

can bui ld a finished Matboard in 30 minutes. I

also know how to design a PCB and have

learned some programming ski l ls l ike how to use

a button with the GPIO.

Martin : From what I have seen, the Raspberry

Pi has done a great job of getting Matthew

involved in electronics and programming. I t is

quite fascinating to see him come up with an

idea, write the code and wire the Matboard into a

project.

The Tomato Watering Project

When we are on holiday we needed a solution to

water our tomatoes in the greenhouse. Asking

our neighbour to do this seemed too simple(!) , so

we created the fol lowing setup.

The idea was to use water from a waterbutt that

is near the greenhouse with a small 1 2V pump.

Lucki ly our greenhouse is near the house, so we

were able to pick up a strong Wi-Fi signal.

I t uses a Python fi le that is executed at 1 8:01

every day using crontab on the Raspberry Pi.

We then read a water level sensor that is

mounted with LEGO® bricks to determine if

there is sufficient water to start the pump cycle. I f

the water level is low then a function is cal led to

send an alert email .

I f the water level is OK, an electronic valve opens

and the pump runs for two minutes. This is

connected to a plastic pipe with holes dri l led in it,

which works surprisingly well .

After two minutes the valve closes and the pump

stops. Without the valve we found that the siphon

effect kicks in and empties the whole water butt

into the green house (something else I learnt the

hard way).

The Python code executes a command to take a

picture of the greenhouse and emails it from a

Gmail account.

The system is powered by a 24W AC-DC PSU

that del ivers 1 2V to power the pump and valve. A

1 2V to 5V DC-DC converter is instal led on the

prototype area, to tap off 5V for the Raspberry Pi

and Matboard.

We also used a DS1 307+ Real Time Clock chip

so that if we lose the Wi-Fi connection or have

any kind of power outage, the system can sti l l

keep time and activate at 1 8:01 .

Raspberry Pi and Matboard control l ing a water pump

http://www.wlabs.co.uk

1 6

We plan to add a few more features, that wil l use

extra inputs and outputs of the Matboard over

the next few months.

Python code

#! /usr/bin/python

#

Note: you must change lines 29, 30 & 31

import RPi. GPIO as GPIO, feedparser

from time import sleep

import smtplib, os, sys

from email. mime. text import MIMEText

from email. MIMEMultipart import MIMEMulti

part

from email. MIMEImage import MIMEImage

GPIO. setwarnings(False)

GPIO. setmode(GPIO. BOARD)

Set up GPIO Inputs

Yellow Input

GPIO. setup(7, GPIO. IN)

Orange LED

GPIO. setup(12, GPIO. OUT)

#Set LEDs to Off and outputs to False

GPIO. output(12, False)

Send email message and photo from Gmail

def send_email(msg):

Change these 3 lines to your details

USERNAME = "me@gmail. com"

PASSWORD = "your Gmail password"

MAILTO = "someone@example. com"

msg[' From'] = USERNAME

msg[' To'] = MAILTO

msg. attach(MIMEImage(file("/home/pi/ma

gpi/water. jpg"). read()))

server = smtplib. SMTP(' smtp. gmail. com: 5

87')

server. ehlo_or_helo_if_needed()

server. starttls()

server. ehlo_or_helo_if_needed()

server. login(USERNAME, PASSWORD)

server. sendmail(USERNAME, MAILTO, msg. a

s_string())

server. quit()

print"Email sent to: " + MAILTO

return

Send email when there is no water

def Send_nowater_email():

print"No water"

msg = MIMEMultipart()

msg. attach(MIMEText(' Water Butt Empty')

)

msg[' Subject'] = ' Water Butt Empty'

send_email(msg)

return

Send email when greenhouse is watered

def Send_watered_email():

print"Sending image"

msg = MIMEMultipart()

msg. attach(MIMEText(' Greenhouse watered

'))

msg[' Subject'] = ' Greenhouse Watered'

send_email(msg)

return

Turn on the water pump

def water_plants():

GPIO. output(12, True)

sleep(120)

GPIO. output(12, False)

return

Take a picture called water. jpg

def take_picture():

os. system("raspistill -o /home/pi/magpi

/water. jpg -w 1024 -h 768 -q 30")

Main control loop

while True:

Input_yellow = GPIO. input(7)

print Input_yellow

if Input_yellow == False:

water_plants()

take_picture()

Send_watered_email()

print"Wait 30 seconds"

sleep(30)

print"Exit program"

sys. exit()

if Input_yellow == True:

take_picture()

Send_nowater_email()

print"Wait 30 seconds"

sleep(30)

print"Exit program"

sys. exit()

http://pi3g.com/british2014

201 8

SKILL LEVEL : BEGINNER

Jacob Marsh

ModMyPi

PHYSICAL COMPUTING
Brought to you by ModMyPi

GPIO Sensing: HC-SR04
ultrasonic range finder - Part 3

In previous tutorials we have outl ined temperature

sensing, PIR motion control lers plus buttons and

switches, al l of which can plug directly into the

Raspberry Pi 's GPIO ports. The HC-SR04 ultrasonic

range finder is simi larly very simple to use, however

the signal it outputs needs to be converted from 5V to

3.3V so as not to damage the Raspberry Pi! We wil l

introduce some physics along with electronics in this

tutorial , in order to explain each step.

What you will need

HC-SR04

1 kΩ resistor

2kΩ resistor

Jumper wires

Ultrasonic distance sensors

Sound consists of osci l lating waves travel l ing through

a medium (such as air) with the pitch being

determined by the closeness of those waves to each

other, defined as the frequency. Only some of the

sound spectrum (the range of sound wave

frequencies) is audible to the human ear, defined as

the “acoustic” range. Very low frequency sound

below acoustic is defined as “infrasound”, with high

frequency sounds above, cal led “ultrasound”.

Ultrasonic sensors are designed to sense object

proximity or range using ultrasound reflection, simi lar

to radar, to calculate the time it takes to reflect

ultrasound waves between the sensor and a solid

object. Ultrasound is mainly used because it is

inaudible to the human ear and is relatively accurate

within short distances. You could of course use

acoustic sound for this purpose, but you would have a

noisy robot, beeping every few seconds.

A basic ultrasonic sensor consists of one or more

ultrasonic transmitters (basical ly speakers), a

receiver and a control circuit. The transmitters emit a

high frequency ultrasonic sound, which bounces off

any nearby sol id objects. Some of that ultrasonic

noise is reflected and detected by the receiver on the

sensor. That return signal is then processed by the

control circuit to calculate the time difference

between the signal being transmitted and received.

This time can subsequently be used, along with some

clever math, to calculate the distance between the

sensor and the reflecting object.

The HC-SR04 Ultrasonic

sensor we wil l be using in this

tutorial for the Raspberry Pi

has four pins: Ground (GND),

Echo Pulse Output (ECHO),

https://www.modmypi.com/shop

1 9

Trigger Pulse Input (TRIG), and 5V supply (Vcc). We

power the module using Vcc, ground it using GND

and use our Raspberry Pi to send an input signal to

TRIG, which triggers the sensor to send an ultrasonic

pulse. The pulse waves bounce off any nearby

objects and some are reflected back to the sensor.

The sensor detects these return waves and

measures the time between the trigger and returned

pulse, and then sends a 5V signal on the ECHO pin.

ECHO wil l be “low” (0V) unti l the sensor is triggered

when it receives the echo pulse. Once a return pulse

has been located ECHO is set “high” (5V) for the

duration of that pulse. Pulse duration is the ful l time

between the sensor outputting an ultrasonic pulse

and the return pulse being detected by the sensor

receiver. Our Python script must therefore measure

the pulse duration and then calculate the distance.

NOTE: The sensor output signal (ECHO) on the HC-

SR04 is rated at 5V. However, the input pin on the

Raspberry Pi GPIO is rated at 3.3V. Sending a 5V

signal into that unprotected 3.3V input port could

damage your Raspberry Pi, which is something we

want to avoid! We wil l need to use a small voltage

divider circuit, consisting of two resistors, to lower the

sensor output voltage to something our Raspberry Pi

can handle.

Voltage dividers

A voltage divider consists of two resistors (R1 and

R2) in series connected to an input voltage (Vin),

which needs to be reduced to our output voltage

(Vout) . In our circuit, Vin wil l be ECHO, which needs

to be decreased from 5V to our Vout of 3.3V.

The fol lowing circuit and

simple equation can be

applied to many applications

where a voltage needs to be

reduced. I f you do not want

to learn how this works, just

get a 1 kΩ resistor and a 2kΩ

resistor.

Without getting too deep into the math side, we only

actual ly need to calculate one resistor value, as it is

the dividing ratio that is important. As we know our

input voltage (5V) and our required output voltage

(3.3V), so we can use any combination of resistors to

achieve the reduction. I decided to use a 1 kΩ resistor

in the circuit as R1 . Adding the other values to the

equation gives the fol lowing result:

So, we wil l use 1 kΩ for R1 and a 2kΩ resistor for R2.

Assemble the circuit

We wil l use four pins on the Raspberry Pi for this

project: GPIO 5V [Pin 2] → Vcc (5V Power), GPIO

GND [Pin 6] → GND (0V Ground), GPIO 23 [Pin 1 6]

→ TRIG (GPIO Output) and GPIO 24 [Pin 1 8] →

ECHO (GPIO Input) .

20

1 . Plug four of your male to female jumper wires into

the pins on the HC-SR04 as fol lows: red → Vcc, blue

→ TRIG, yel low → ECHO and black → GND.

2. Plug Vcc into the positive rai l of your breadboard

and plug GND into your negative rai l .

3. Plug GPIO 5V [Pin 2] into the positive rai l and

GPIO GND [Pin 6] into the negative rai l .

4. Plug TRIG into a blank rai l and plug that rai l into

GPIO 23 [Pin 1 6]. (You can plug TRIG directly into

GPIO 23 if you want) .

5. Plug ECHO into a blank rai l and l ink another blank

rai l using R1 (1 kΩ resistor) .

6. Link your R1 rai l with the GND rai l using R2 (2kΩ

resistor) . Leave a space between the two resistors.

7. Add GPIO 24 [Pin 1 8] to the rai l with your R1 (1 kΩ

resistor) . This GPIO pin needs to sit between R1 and

R2.

That's it! Our HC-SR04 sensor is connected to our

Raspberry Pi.

Sensing with Python

Now that we have connected our ultrasonic sensor to

our Raspberry Pi, we need to program a Python

script to detect distance. The ultrasonic sensor output

(ECHO) wil l always output low (0V) unless it has

been triggered, in which case it wi l l output 5V (3.3V

with our voltage divider) . We therefore need to set

one GPIO pin as an output, to trigger the sensor, and

one as an input to detect the ECHO voltage change.

First, import the Python GPIO library, import our time

library (so we make our Raspberry Pi wait between

steps) and set our GPIO pin numbering:

import RPi. GPIO as GPIO

import time

GPIO. setmode(GPIO. BCM)

Next, we name our output pin GPIO 23 (which

triggers the sensor) as TRIG and our input pin GPIO

24 (which reads the return signal) as ECHO:

TRIG = 23

ECHO = 24

We then print a message to let the user know that

distance measurement is in progress:

print "Distance Measurement In Progress"

Next, set the two GPIO ports as inputs and outputs

as defined previously:

GPIO. setup(TRIG, GPIO. OUT)

GPIO. setup(ECHO, GPIO. IN)

Then, ensure that the TRIG pin is set low and give

the sensor a couple of seconds to settle:

GPIO. output(TRIG, False)

print "Waiting For Sensor To Settle"

time. sleep(2)

The HC-SR04 sensor requires a short 1 0μS pulse to

trigger the module, which wil l cause the sensor to

start the ranging program (8 ultrasound bursts at 40

kHz) in order to obtain an echo response. So, to

create our trigger pulse, we set the trigger pin high for

1 0μS then set it low again:

GPIO. output(TRIG, True)

time. sleep(0. 00001)

GPIO. output(TRIG, False)

Now that we have sent our pulse signal we need to

21

l isten to our input pin, which is connected to ECHO.

The sensor sets ECHO to high for the amount of time

it takes for the pulse to go and come back, so our

code therefore needs to measure the amount of time

that the ECHO pin stays high. We use a while loop

to ensure that each signal timestamp is recorded in

the correct order.

The time. time() function wil l record the latest

timestamp for a given condition. For example, if a pin

goes from low to high, and we are recording the low

condition using the time. time() function, the

recorded timestamp wil l be the latest time at which

that pin was low.

Our first step must therefore be to record the last low

timestamp for ECHO (pulse_start) i .e. just before

the return signal is received and the pin goes high:

while GPIO. input(ECHO) == 0:

pulse_start = time. time()

Once a signal is received, the value changes from

low (0) to high (1) and the signal wi l l remain high for

the duration of the echo pulse. We therefore also

need the last high timestamp for ECHO (pulse_end) :

while GPIO. input(ECHO) == 1:

pulse_end = time. time()

We can now calculate the difference between the two

recorded timestamps and hence the duration of the

pulse (pulse_duration) :

pulse_duration = pulse_end - pulse_start

Knowing the time it takes for the signal to travel to an

object and back again, we can now calculate the

distance using the fol lowing formula:

The speed of sound is variable, depending on what

medium it is travel l ing through, in addition to the

temperature of that medium. However, the speed of

sound at sea level is 343m/s (or 34300cm/s) so we

wil l use this as our baseline.

We also need to divide our time by two because what

we have calculated above is actual ly the time it takes

for the ultrasonic pulse to travel the distance to the

object and back again. We simply want the distance

to the object! We can simplify the calculation to be

completed in our Python script as fol lows:

We can plug this calculation into our Python script:

distance = pulse_duration * 17150

Now we round our distance to 2 decimal places:

distance = round(distance, 2)

Then we print the distance. This command wil l print

the word “Distance:” fol lowed by the distance

variable, fol lowed by the unit “cm”:

print "Distance: " , distance, "cm"

Final ly, we clean our GPIO pins to ensure that al l

inputs and outputs are reset:

GPIO. cleanup()

Save your Python script as range_sensor. py and

run it using the fol lowing command:

sudo python range_sensor. py

This article is
sponsored by

ModMyPi

All breakout boards and accessories used in this

tutorial are avai lable for worldwide shipping from

the ModMyPi webshop at www.modmypi.com

http://www.modmypi.com
http://www.modmypi.com
http://www.modmypi.com

The M agPi print edition

Experience hundreds of pages of Raspberry Pi hardware projects, software tutorials, reviews of the

latest expansion boards and interviews with the makers and creators involved.

Original ly funded through Kickstarter, The M agPi printed bundles of Volumes 1 and 2 bring al l the

information of this peer-reviewed magazine within arm's reach.

Volume 1 : I ssues 1 -8

Volume 2: I ssues 9-1 9

Avai lable worldwide fom these resel lers:

swag.raspberrypi.org

www.modmypi.com

www.pi-supply.com

thepihut.com

www.adafruit.com (U SA)

www.buyraspberrypi.com.au (Austral ia)

The M agPi is also avai lable on special offer to schools for a l imited time only:

www.themagpi.com/education

http://swag.raspberrypi.org
http://www.modmypi.com
http://www.pi-supply.com
http://thepihut.com
http://www.adafruit.com
http://www.buyraspberrypi.com.au
http://www.themagpi.com/education
http://www.milocreek.com

London Raspberry Jam

When: 8th November 201 4, 1 1 .00am to 6.00pm
Where: Kano, 69-89 Mile End Road, London, E1 4TT, UK

A celebration of everything to do with DIY technology: soldering, 3D printing, robots, gaming, virtual
real ity and more! The event is open to al l ages. http://www.eventbrite.co.uk/e/1 331 0980501

Bristol Digimakers

When: Saturday 29th November 201 4, 1 0.30am to 4.30pm

Where: At-Bristol, Anchor Road, Bristol, BS1 5DB, UK

Digimakers is a series of technology events aimed at chi ldren (7+), teachers and parents. With lots of

workshops the event provides a great opportunity to learn about electronics and computing: from

programming to hacking hardware. https://www.facebook.com/digimakersbristol

Want to keep up to date with al l things Raspberry Pi in your area?
Then this section of The MagPi is for you! We aim to l ist Raspberry Jam events in your area, providing

you with a Raspberry Pi calendar for the month ahead.

Are you in charge of running a Raspberry Pi event? Want to publicise it?
Email us at: editor@themagpi.com

SWAMP Fest (South WAles Makers & Programmers)

When: Saturday 1 1 th October 201 4, 1 0.00am to 5.00pm
Where: TechHub Swansea, 1 1 Wind Street, Swansea, SA1 1 DP, UK

Meet the coder, hacker, maker and associated groups in and around South Wales. With a large number

of talks and workshops covering Arduino, Minecraft, Qt5, 3D printing and more besides this event looks

set to be great fun and highly interesting. http://www.eventbrite.co.uk/e/1 2677094531 .

Come and meet The MagPi on our stand. We'l l have demonstrations of HDMIPi and the new Model B+

as well as various other hardware boards. In the afternoon we'l l be giving a short talk about the

magazine and giving you the opportunity to ask us, well , anything you want real ly. We look forward to

seeing you in Swansea.

Huddersfield Raspberry Jam

When: Saturday 25th October 201 4, 1 0.00am to 3.00pm
Where: Huddersfield Library, Princess Alexandra Walk, Huddersfield, HD1 2SU, UK

A Halloween themed Raspberry Jam! Make something Halloween themed with your Raspberry Pi and

bring it along. http://huddersfieldraspberryjam.co.uk/

23

http://www.eventbrite.co.uk/e/13310980501
http://www.eventbrite.co.uk/e/12677094531
http://huddersfieldraspberryjam.co.uk/
https://www.facebook.com/digimakersbristol

24

SKILL LEVEL : BEGINNER

Dougie Lawson

MagPi Writer

Build QR Code structures
inside Minecraft

In this article I am going to show you how you

can dynamical ly display QR codes inside

Minecraft: Pi Edition. You can use these for many

ideas - from displaying clues to puzzles in your

Minecraft world to l inking to websites. Readers

are also invited to read our other Minecraft

articles in Issue 1 1 and Issue 23.

Getting started

I f you have the latest version of Raspbian then

Minecraft already comes preinstal led. I f you do

not have the latest Raspbian then let's get going

by instal l ing Minecraft and testing that it works.

Open an LXTerminal window and enter the

fol lowing commands:

cd ~
wget https: //s3. amazonaws. com/assets. minecra
ft. net/pi/minecraft-pi-0. 1. 1. tar. gz
tar -zxvf minecraft-pi-0. 1. 1. tar. gz

Make a note of /home/pi/mcpi/api/python as

we wil l need that later. Test Minecraft with the

fol lowing commands:

cd ~/mcpi
. /minecraft-pi

You should get the famil iar screen for Minecraft

and can bui ld a new world. Have a play around

and when you are done press <TAB> to get

control of the cursor. We can switch to the

LXTerminal window and close down Minecraft by

pressing the <CTRL>+<C> keys together. We

wil l come back to Minecraft later when we are

ready to run the Python program that is going to

bui ld our structure in the virtual world.

Getting QR encoder and testing your
first QR code

Although we could bui ld our own QR code maker

in Python, to keep things very simple and give us

instant results we wil l use a ready bui lt QR code

generator cal led qrencode .

Open an LXTerminal and issue the fol lowing

commands:

sudo apt-get install qrencode
qrencode -t ANSI "Hello World"

We have now got a QR code displaying in our

LXTerminal window. You may need to stretch the

window size so that the white borders at the top

and bottom are visible. Get your smart phone

and scan that QR code using any QR code app

to prove that everything is working correctly.

25

The qrencode program can generate QR codes

in various formats. In our Python program we are

going to generate an ASCII (plain text) format

QR code and edit the output with the stream

editor, sed . The qrencode program generates

"##" for every black square and a space for every

white square in the QR code, when we use the

-t ASCII option.

Open an LXTerminal and issue the fol lowing

complex command:

qrencode -t ASCII "Hello Minecraft" | \
sed ' s/ / /g' | sed ' s/##/#/g' > ~/mc. qr. txt

Note the two spaces in ' s/ / /g' . We have

now generated the data that wil l be the input for

our Python program. Take a look at it with the

cat command or use the Leafpad editor.

Glueing it all together

To bui ld a QR code structure in Minecraft we are

going to use the Python application programming

interface (API) . That al lows us to control our

Minecraft world with a program. For example, we

can discover Steve's co-ordinates (Steve is the

protagonist, i .e. your playable character) and we

can teleport Steve from one location to another.

We can also add or delete blocks in the world.

So, we have the data bui lt from qrencode and

sed and we have a method to read that data and

bui ld some blocks in our Minecraft world. Let's

look at the Python program to do this. The

program is cal led mc. qr. py and I have stored it

in a directory cal led python , inside the home

directory.

First we import the sys package and add the API

directory to the system path so that Python can

find the Minecraft Python API packages. Note,

please choose the correct path depending if you

instal led Minecraft or it came pre-instal led:

#! /usr/bin/python
import sys
sys. path. insert(1, ' /home/pi/mcpi/api/python')
#sys. path. insert(1, ' /opt/minecraft-pi/api/
python')

Now we can import the API packages to connect

to the Minecraft world and bui ld blocks:

import mcpi. minecraft as mine
import mcpi. block as block

Next we create a connection and get the current

co-ordinates where Steve is standing:

mc = mine. Minecraft. create()
pPos = mc. player. getTilePos()
print "Player point: " , pPos. x, pPos. y, pPos. z

Now move Steve (teleport him) twenty blocks

back, forty blocks down and twenty blocks to his

left and read his new position:

mc. player. setTilePos(pPos. x - 20, pPos. y - 40,
pPos. z - 20)
nPos = mc. player. getTilePos()

Open the input fi le generated by qrencode and

read every l ine into an array:

qrc = open(' mc. qr. txt' , ' r')
arrayQR = []
for line in qrc:

arrayQR. append(line)
qrc. close()

We then initial ise the variables we use to position

the blocks as we generate them in the Minecraft

world:

26

print "Starting point: " , nPos. x, nPos. y, nPos. z
x = nPos. x
y = nPos. y
z = nPos. z

The fi le generated by qrencode would come out

upside down if we just worked from the first

record to the last. So we need to read the last

l ine first (to bui ld the left hand l ine of blocks) and

work backwards to the top (right hand l ine of

blocks). Python has the reversed() function to

read arrays from the last record to the first

record. So each time round this FOR loop, the

variable i is the l ine we are working on.

We set the starting position for the height of the

block above Steve's position to the length of

each record and work down while reading the

l ine from left to right. Trust me, that gets the QR

code turned through 90 degrees but it is not back

to front. QR codes have the property that you can

read them up, down, left or right (those three

large squares in the corners tel l the QR code

reader how the code is oriented).

As we read the fi le, i f the character is a space

(white square) we bui ld a block of snow (block id

= 80) in the world. I f the character is a hash

(black square) we bui ld a block of obsidian

(block id = 49). You can find the block id codes

on the Minecraft Wiki at http://minecraft.

gamepedia.com/Data_values/Block_IDs:

for i in reversed(arrayQR):
y = pPos. y + len(i)

for j in range(0, len(i)):
if (i[j] == " "):

block = 80
if (i[j] == "#"):

block = 49
y = y - 1
mc. setBlock(x, y, z, block)

x = x + 1

Final ly we teleport Steve back to his original

position:

mc. player. setPos(pPos. x, pPos. y, pPos. z)

Display the QR code in Minecraft

To get everything running we need to start

Minecraft then when it is running we start our

Python program. So we need two LXTerminal

windows. In the first LXTerminal window enter

the fol lowing commands:

cd ~/mcpi
. /minecraft-pi

Login to your Minecraft world and find an area

without too much terrain (we don't want trees

blocking our view). Then press the

<ALT>+<TAB> keys together to switch to the

second LXterminal window. In that second

window enter the fol lowing commands:

cd ~/python
chmod 755 . /mc. qr. py
. /mc. qr. py

The screen wil l go blank because the last few

blocks are bui lt on top of Steve! When it is done

drive round to find your QR code in the Minecraft

world. I found I needed to bui ld a tower of stone

(or dirt) to get Steve positioned so that the QR

code was square on and fi l led the top half of the

screen without any keystoning effects. I was then

able to scan it with my smart phone.

I 'd l ike to thank Konrad, my 1 4 year old son and

Minecraft expert, for his patience and advice. I

started bui lding the code with diamond (block id

= 57) but Konrad suggested using snow for

better contrast.

http://minecraft.gamepedia.com/Data_values/Block_IDs

http://www.openelectrons.com
http://www.brucesmith.info

28

SKILL LEVEL : BEGINNER

Alec Clews

Guest Writer

Version control basics using
Git - Part 1

Introduction

When producing an article for The MagPi up to

five different people may work on the article, in

addition to the author. There is testing, layout,

graphics, proof reading plus edits by the Issue

Editor. To ensure that al l changes are recorded

and everyone is working on the latest version, we

use a tool cal led Git. Git is widely used by many

organisations so it is a useful ski l l to have. I t is

also a great tool for student projects. We asked

Alec Clews to explain how it al l works.

What is Version Control?

Version Control (VC) is a common practice used

to track al l the changes that occur to the fi les in a

project over time. I t needs a Version Control

System (VCS) tool to work.

Think about how you work on a computer. You

create stuff; i t might be a computer program you

are modifying, resume for a job application, a

podcast or an essay. The process we all fol low is

usual ly the same. You create a basic version and

you improve it over time by making lots of

different changes. You might test your code,

spel l check your text, add in new content, re-

structure the whole thing and so on. After you

finish your project (and maybe release the

content to a wider audience) the material you

created can be used as the basis for a new

project. A good example is writing computer

programs, which usual ly consist of several

different fi les that make up the project. Once you

create a version you are happy with, programs

often have to be changed many times to fix bugs

or add new features. Programs are often worked

on and modified by many different people, many

of whom want to add features specific to their

needs. Things can get confusing very quickly!

Because this article is written for users of the

Raspberry Pi the examples we wil l use from now

on wil l be based on software development

projects, but remember that you can apply the

principles to any set of computer fi les. [Ed: For

example the Scribus files we use at The MagPi.]

How does a VCS work?

The way that a VCS works is by recording a

history of changes. What does that mean?

Every time a change is completed (for example

fixing a bug in a project) the developer decides

that a logical "save" point has been reached and

wil l store al l the fi le modifications that make up

the change in the VCS database.

Author photo courtesy of Jack Cotton

29

The term often used for a group of changes that

belong together l ike this is a changeset. As well

as changing l ines of code in source fi les there

might be changes to configuration fi les,

documentation, graphic fi les and so on.

Along with the changes to the fi les the developer

wil l be prompted by the VCS to provide a

description of the change with a commit

message which is appended to the commit log .

The process of storing the changes in the VCS

database (usual ly referred to as the repository

or repo for short) is cal led making a commit.

The hard work in making a commit is done by the

VCS - al l the developer does is issue the commit

command and provide the commit message. The

VCS software calculates which fi les have

changed since the last commit and what has

changed. I t then stores these changes, plus the

commit message, the date, time, name of the

developer (committer) and other information in

the repository.

Version Control is also sometimes referred to as

Revision Control.

Now let us add another layer. Our project might

be big enough that we are a team working on the

project together and we all make changes to the

digital fi les (also cal led assets) . That wil l

introduce a lot of potential problems. We wil l now

talk about those and how a VCS can help.

Why is Version Control so important?

Imagine a software project. I t might have

hundreds of fi les (for example source code, bui ld

scripts, graphics, design documents, plans etc.)

and dozens of people working on the project

making different types of changes. There are

several problems that wil l happen:

1 . Two people might be editing the same fi le at

once and changes can be overwritten.

2. After the project has been running for some

time it is very hard to understand how the project

has evolved and what changes have been made.

How can we locate a problem that might have

been introduced some time ago? Just fixing the

problem may not be enough - we probably also

need to to understand the change that introduced

it.

3. I f two people want to change the same fi le one

wil l have to wait for the other to finish. This is

inefficient.

4. I f two people are making (long running)

changes to the project it may take some time for

both sets of changes to be compatible with each

other. I f the same copy of the project is being

updated with both sets of changes then the

project may not work correctly or even compile.

There are three core questions a VCS helps to

answer via the commit history and commit

messsage - what changes were made in the

past, why were they made and who made them?

Individual developers find this information useful

as part of their dai ly workflow and it also helps

organisations with their compliance and audit

management if needed.

There are also three core things a VCS helps do:

1 . Undo a half complete or incorrect change

made in error and rol l back to a previous version.

2. Recreate a snapshot of the project as it was at

some point in the past.

3. Al low two streams of changes to be made

independently of each other and then integrate

them at a later date (paral lel development) . This

feature depends on the specific features of the

VCS tool you are using.

You may find the article at http://tom.preston-

werner.com/2009/05/1 9/the-git-parable.html

useful in introducing important ideas.

http://tom.preston-werner.com/2009/05/19/the-git-parable.html

30

Types of VCS tools available

Distributedvs Centralised
Modern VCS tools work on a distributed model

(DVCS). This means that every member of the

project team keeps a complete local copy of al l

the changes. The previous model, sti l l widely

used with tools l ike Subversion, is central ised.

Here there is only one central database with al l

the changes and team members only have a

copy of the change they are currently working on

in their local workspace.

(In version control terminology a local workspace

is often cal led a working copy and it wi l l contain

a specific revision of fi les plus changes.)

Open source and commercial tools
There are many commercial and open source

tools avai lable in the market. As well as the core

version control operations, different tools wil l

offer different combinations of features, support

and integrations.

In this article we wil l be using a VCS called Git, a

popular open source tool that uses a distributed

model with excel lent support for paral lel

development.

Summary

Version Control tools:

• Provide comprehensive historical information

about the work done on a project.

• Help prevent the loss of information (e.g. edits

being overwritten).

• Help the project team be more efficient by

using paral lel development (and often integrating

with other tools such as bug tracking systems,

project bui ld systems, project management etc.)

• Help individual developers be more efficient

with tools such as difference reports.

Example VCS operations using Git

The rest of this article wil l take a hands on

approach by demonstrating the use of Git to

manage a simple set of changes. You should

fol low along on your own Raspberry Pi using a

new test project as explained below.

Git is a very popular DVCS original ly developed

to maintain the GNU/Linux kernel source code

(the operating system that usual ly runs on the

Raspberry Pi) . I t is now used by many very large

open source projects and a lot of commercial

development teams. Git is very flexible and thus

has a reputation of being hard to use, but we are

only going to concentrate on the ten or so

commands you need to be useful day to day.

The fol lowing examples assume that you are

using Raspbian Linux on a Raspberry Pi. First

we are going to download an example Python

project cal led Snakes, which we wil l store in a

directory cal led snakes .

You can do that by running the fol lowing

commands from the command line or in

LXTerminal if you are using the desktop GUI:

cd ~

mkdir snakes

wget -O game. tar. gz http: //goo. gl/nB4tYe

cd snakes

tar -xzf . . /game. tar. gz

I f you are unfamil iar with using commands from

the terminal there is a tutorial on how to use the

Linux command line at http://l inuxcommand.org/

learning_the_shel l .php.

Git setup

Make sure you have the correct tools instal led by

typing the fol lowing commands:

sudo apt-get install git git-gui gitk

sudo apt-get install git-doc

Test the instal lation with the command:

http://linuxcommand.org/learning_the_shell.php

31

git --version

You should see something l ike (or newer):

git version 1. 17. 10. 4

Tell Git who you are. This is very important

information and is recorded in every change you

make. You must of course substitute your own

name and email address in the correct places:

git config --global user. name "My Name"

git config --global user. email "a@b. com"

Git records that information in a user

configuration fi le cal led . gitconfig in your

home directory. Note that fi les and directories

that are prefixed with a period (.) are hidden. I f

you enter the command ls you wil l not see these

fi les. Instead enter ls -A to see everything.

In case you exchange fi les with developers

working on a Microsoft Windows, (which is highly

l ikely) you should also run the command:

git config --global core. autocrlf input

See https://help.github.com/articles/dealing-with-

l ine-endings#platform-al l for further detai ls.

More information on setting up Git can be found

at http://git-scm.com/book/en/Getting-Started-

First-Time-Git-Setup.

Start a new project by creating a repo

The next thing we need to do is create an empty

Git database called a repo (short for repository)

inside our snakes directory. Enter:

cd snakes

git init

You should see something l ike:

Initialized empty Git repository in

/home/pi/snakes/. git/

Git has now created a hidden directory cal led

. git . Remember, use ls -A to see it.

Next we issue a git status command. Notice

that in Git al l commands are typed after the word

git (e.g. git init or git status) . Enter:

git status

The output from the status command is:

On branch master

#

Initial commit

#

Untracked files:

(use "git add <file>. . . " to include in

what will be committed)

#

game/

helloworld. py

if. py

maths. py

variables. py

while. py

nothing added to commit but untracked

files present (use "git add" to track)

We can ignore most of the detai l for now. What is

important is that Git:

1 . Warns us that some fi les are not being

control led (untracked) by the VCS.

2. Lists the fi les and directories with their status.

We wil l see this change as we progress further in

the example.

Add the project files to Git

Before changes are added to the repo database

we have to decide what wil l be in the commit.

There might be many changes in the fi les we are

working on, but our changset is actual ly only a

small number of changes.

Git has a novel solution to this cal led the index.

Before a fi le change can be committed to the

repo it is first added to the index. As well as

adding fi les to the index, fi les can also be moved

or deleted. Once all the parts of the commit are

complete, a commit command is issued.

https://help.github.com/articles/dealing-with-line-endings#platform-all
http://git-scm.com/book/en/Getting-Started-First-Time-Git-Setup

32

The fol lowing examples are simple and for the

time being you should just expect that before a

commit is done changes are added to the index,

as the fol lowing example shows. Note the trai l ing

period (.) to represent the current directory and

its subdirectories:

git add .

This command does not produce any output by

default so do not be concerned if you get no

messages. I f you get a message similar to,

warning: CRLF will be replaced by LF

then this is normal as some versions of the

Snakes project are provided in Windows format

text fi les. You can fix this with the dos2unix

uti l i ty.

I f we run the git status command now we get

different output:

On branch master

#

Initial commit

#

Changes to be committed:

(use "git rm --cached <file>. . . " to

unstage)

#

new file: game/game0. py

new file: game/game1. py

new file: game/game2. py

new file: game/game3. py

new file: game/game4. py

new file: game/snake. py

new file: helloworld. py

new file: if. py

new file: maths. py

new file: variables. py

new file: while. py

This time each fi le that wil l be committed is

l isted, not just the directory, and the status has

changed from untracked to new fi le.

Now that the fi le contents have been added to

the index we can commit these changes as our

first commit with the git commit command. Git

adds the fi les and related information to our repo

and provides a rather verbose set of messages

about what it did. Enter:

git commit -m "Initial Commit"

The output from the command should be l ike:

[master (root-commit) 841ae8c] Initial

Commit

11 files changed, 693 insertions(+)

create mode 100755 game/game0. py

create mode 100755 game/game1. py

create mode 100755 game/game2. py

create mode 100755 game/game3. py

create mode 100755 game/game4. py

create mode 100755 game/snake. py

create mode 100755 helloworld. py

create mode 100755 if. py

create mode 100755 maths. py

create mode 100755 variables. py

create mode 100755 while. py

Now try the git status command again. The

output is:

On branch master

nothing to commit (working directory

clean)

This means that the contents of our working copy

are identical to the latest version stored in our

repo.

Another command worth running is git log ,

which is currently very brief as we have only

have one commit. Mine looks l ike this:

commit 841ae8c672abac0ad9d8483fc3d68f060d9

dd5d8

Author: Pi <acdsip61-pi@yahoo. com>

Date: Thu Aug 14 09: 36: 43 2014 +1000

Initial Commit

The meaning of the Author, Date and comment

field should be obvious. The commit field wil l be

explained later. We now have our project under

version control.

Coming up...

Next time we wil l see what happens when we

make some changes.

http://www.wyliodrin.com

34

SKILL LEVEL : BEGINNER

Jon Silvera

Guest Writer

Part 3: Keyboard input, animation

and arrays

Hello once again and welcome to our FUZE
BASIC tutorial . To further our exploration into the
exciting world of BASIC we are going to get
things moving. Over the next few pages we wil l
add moving enemies (big rocks actual ly) , plus
the abi l i ty to fire. Of course firing a bul let is one
thing but what happens when it hits something?

INKEY and scanKeyboard

Last month we added our player ship graphic
and some movement commands to get us
started. The movement commands need to be
explained as there is some very useful stuff going
on.

General ly the method for checking if a key has
been pressed is to use the INKEY command as
this wil l return the key being pressed when you
check. For example Key=INKEY wil l either store
the value -1 in the variable Key i f no key is
pressed, or the ASCII value of the key that is
being pressed. The <Spacebar> has an ASCII
value of 32, the <A> key is 65, the <a> is 97 and
so on. You can write a simple program to help
you determine the INKEY values.

Before we get started though please
go back to the FUZE BASIC
environment using the icon on the
Desktop. Then go to the Editor <F2>
and enter the fol lowing simple program:

CYCLE

PRINT INKEY

REPEAT

RUN <F3> this and hold down different keys to
see what value they give you. Notice however
that if you hold down two keys simultaneously
only one of the numbers wil l be displayed. This
means we cannot read two or more keys being
pressed at the same time. This is not good for
games programming so we added a command to
FUZE BASIC to do exactly that.

To demonstrate this let's first get back to
business. Press <ESC> to exit the program and
then press <F2> twice to return to direct mode so
we can load our program. Enter:

DIR

You should see a directory cal led MagPi . Enter:

CD MagPi

LOAD MagPi

Press <F2> to go to the Editor. Hopeful ly your
program wil l be as we left it but if not you might
want to go through and make sure al l is as it
should be.

The ful l program listing is as fol lows:

35

// MagPi Game

PROC Setup

CYCLE

PROC CheckControls

PROC ScreenUpdate

REPEAT

END

DEF PROC CheckControls

UpKey = scanKeyboard (scanUp)

DownKey = scanKeyboard (scanDown)

LeftKey = scanKeyboard (scanLeft)

RightKey = scanKeyboard (scanRight)

IF UpKey THEN ShipY = ShipY + 1

IF DownKey THEN ShipY = ShipY - 1

IF LeftKey THEN ShipX = ShipX - 1

IF RightKey THEN ShipX = ShipX + 1

ENDPROC

DEF PROC ScreenUpdate

plotSprite (Ship, ShipX, ShipY, 0)

UPDATE

ENDPROC

DEF PROC Setup

HGR

updateMode = 0

ShipX = 0

ShipY = gHeight / 2

Ship = newSprite (1)

loadSprite ("Player2. bmp", Ship, 0)

setSpriteTrans (Ship, 255, 0, 255)

ENDPROC

I f you RUN <F3> the program you can see we
can use the cursor keys to move the ship around
the screen. This is handled using the
scanKeyboard (scanxxxx) command. The
statement RightKey = scanKeyboard
(scanRight) checks to see if the Right cursor
key is being pressed. I f i t is it stores a 1 in the
variable RightKey, or a 0 if i t has not been
pressed. This can be applied to every key so it's
easy to check for more than one key press with a
simple IF, AND, THEN statement. Press the
<ESC> key and then <F2> to return to the editor.

gHeight and getSpriteH

We need to add a few restrictions so the player
cannot zoom off the screen. At the same time we
are going to add a simple animation to the
player's ship. First, modify the DEF PROC
CheckControls section so it is as fol lows:

DEF PROC CheckControls

ShipID = 1

UpKey = scanKeyboard (scanUp)

DownKey = scanKeyboard (scanDown)

LeftKey = scanKeyboard (scanLeft)

RightKey = scanKeyboard (scanRight)

IF UpKey AND ShipY <= (gHeight -

getSpriteH (Ship)) THEN

ShipY = ShipY + 4

ShipID = 2

ENDIF

IF DownKey AND ShipY >= 0 THEN

ShipY = ShipY - 4

ShipID = 0

ENDIF

IF LeftKey AND ShipX >= 0 THEN ShipX =

ShipX - 4

IF RightKey AND ShipX <= gWidth/2 THEN

ShipX = ShipX + 2

ENDPROC

Do not RUN it at this point as you wil l just get an
error.

The IF statements check to see if the ShipX or
ShipY positions are off the screen and if so they
wil l not al low further movement. The check IF
UpKey AND ShipY <= (gHeight -
getSpriteH (Ship)) looks much more
complicated than it is. gHeight is a system
variable that contains the maximum height of the
current screen mode and getSpriteH checks
the height of the sprite specified. We do not want
the sprite to go any lower than the bottom of the
screen, but this must take the height of the sprite
into consideration. Try removing this part of the
check to see what happens.

Adding animation

The ShipID variable is going to contain the
player sprite ID so we can display different
sprites just by changing this setting. You can
see from the above the default setting is 1 and
then depending if the Down or Up keys are
pressed it can be 0 or 2 respectively. So, we
need one graphic for Up, one for Down and a
default one for when neither Up nor Down is
pressed.

For the sake of gameplay we have also
increased the speed dramatical ly as the ship
now moves 4 pixels at a time, unless it is moving

36

forward where it has to work a bit harder and
move forward at only 2 pixels at a time.

Because we have introduced a new variable, we
need to change other parts too. Add this
DrawShip procedure immediately after the END
statement:

END

DEF PROC DrawShip

plotSprite (Ship, ShipX, ShipY, ShipID)

ENDPROC

As we are about to have a lot more going on, we
wil l be using separate functions for each of the
main sprites. This one specifical ly draws the
player's ship at the X and Y position. Change the
beginning of the program to:

// MagPi Game

PROC Setup

CYCLE

PROC CheckControls

PROC DrawShip

UPDATE

REPEAT

END

The UPDATE statement is now issued from the
main loop. This wil l keep things running smoothly
as everything wil l be updated at once. Because
of this we no longer need the ScreenUpdate
procedure so this can be deleted. Specifical ly,
delete the fol lowing l ines:

DEF PROC ScreenUpdate

plotSprite (Ship, ShipX, ShipY, 0)

UPDATE

ENDPROC

Nearly there. To introduce a new variable and
add the extra ship graphics update the Setup
procedure so it is the same as the fol lowing:

DEF PROC Setup

HGR

updateMode = 0

ShipX = 0

ShipY = gHeight / 2

Ship = newSprite (3)

loadSprite ("Player1. bmp", Ship, 0)

loadSprite ("Player2. bmp", Ship, 1)

loadSprite ("Player3. bmp", Ship, 2)

setSpriteTrans (Ship, 255, 0, 255)

ShipID = 0

ENDPROC

As you can see we have added two extra sprites.
The clever part is that only
one main sprite container is
required to hold al l the
sprites for that graphic. We
use an index to determine
which one to display. The 0,
1 and 2 at the end of each
loadSprite command
determines the index value.
Then when we want to
display the sprite we use
plotSprite(name, x, y,
index) . You can have
many sprites indexed so
complex animations can be achieved by simply
changing the index.

Ok, now you can RUN <F3> the program. I f you
get any errors you wil l need to go back and
debug. Just make sure everything matches the
l istings provided and it should be fine. Now when
you move around with the cursor keys, things
should be much faster and best of al l the ship wil l
change depending if i t is going up or down. I t is a
very simple but effective technique.

Adding enemies

I t's time to add some scary monsters. Actual ly,
monsters would take a bit more space to cover in
this article so, we are going with rocks.. . but they
are big, ugly ones if that helps!

Unfortunately there is no way to avoid this next
part. We need to add a large section to the
Setup procedure to introduce our enemies. We
could have kept things very simple and just gone
for one enemy sliding across the screen at a
time, but where is the fun in that? We are going
for waves of sixteen at a time (spl it into two lots
of eight) at different speeds and with changing
flying patterns.

The price to pay is in the typing so, heads down
and get on with it. Add the fol lowing after the l ine
ShipID = 0 in the Setup procedure:

37

ShipID = 0

EnemyMax = 63

eID = 0

EnemyID = 0

EnemyX = 0

EnemyY = 0

EnemyActive = 1

EnemyVariation = 0

EnemyScore = 50

EnemySpeed = 0

DIM Enemy(EnemyMax, 6)

DIM Rock(EnemyMax)

FOR num = 0 TO EnemyMax CYCLE

Rock(num) = newSprite (1)

loadSprite("BigRock. bmp", Rock(num), 0)

setSpriteTrans(Rock(num), 255, 0, 255)

REPEAT

EnemyCount = 0

UNTIL EnemyCount > EnemyMax CYCLE

READ EnemyX

READ EnemyY

READ EnemyVariation

READ EnemyScore

READ EnemySpeed

EnemyScore = EnemyScore * EnemySpeed

DATA 1280, 100, 3, 50, 2

DATA 1280, 500, -3, 50, 2

DATA 4000, 366, 4, 50, 3

DATA 4000, 230, -4, 50, 3

DATA 6000, 100, 6, 50, 3

DATA 6000, 500, -6, 50, 3

DATA 11000, 400, 5, 50, 4

DATA 11000, 300, -5, 50, 4

FOR num = 0 TO 7 CYCLE

Enemy(EnemyCount + num, 0) =

Rock(EnemyCount + num)

Enemy(EnemyCount + num, 1) = EnemyX

+ num * getSpriteW (Rock(0))

Enemy(EnemyCount + num, 2) = EnemyY

Enemy(EnemyCount + num, 3) =

EnemyActive

Enemy(EnemyCount + num, 4) =

EnemyVariation

Enemy(EnemyCount + num, 5) =

EnemyScore

Enemy(EnemyCount + num, 6) =

EnemySpeed

REPEAT

EnemyCount = EnemyCount + 8

REPEAT

ENDPROC

PROC Setup explanation

Let me explain what the l ines we have added do.
The first few lines simply introduce lots of new
variables.

DIM Enemy(EnemyMax, 6)

DIM Rock(EnemyMax)

Dimension (DIM) variables are a very powerful
type of variable cal led an array. I t al lows us to
store multiple pieces of information in an index
rather than just a single number in a single
variable. Notice that Rock is a single dimension
array and Enemy is a two-dimension array. We
wil l talk more about arrays later.

FOR num = 0 TO EnemyMax CYCLE

The FOR loop is used to fi l l the Rock() array
with sprite IDs, using the newSprite command,
for each of the 64 rocks.

UNTIL EnemyCount > EnemyMax CYCLE

The UNTIL loop is used to fi l l the Enemy() array
with the X and Y coordinates, the pattern used,
the score value and the speed of each rock.

We are using the READ and DATA commands to
easi ly add a whole load of information in one go.
The main loop reads each of the l ines of data
and stores them in individual variables.

The enemy score is based on 50 * the enemy
speed. However we are not including that this
month so you wil l have to wait unti l next time.

FOR num = 0 TO 7 CYCLE

The rocks are configured in waves of eight. This
smaller FOR loop is used to fi l l the Enemy()
array with information in blocks of 8 at a time.

Again, do not RUN yet as it wi l l not work without
a few more changes.

Arrays

The array variable is very similar to using a
database where you have a record and then
various pieces of information are stored with that

38

record. We have a record ID, (e.g. 1) and then
we store information within this l ike name,
address, post code and so on. In the case of an
array variable we can then refer to any part of
this database with a simple index command.

Looking at the picture below can you tel l me the
value stored in our Enemy array at position 3, 4?
Of course you can, it's -4.

Using arrays al lows us to store massive amounts
of information al l instantly accessible with a
simple index command. For example Speed =
Enemy(4, 6) should now make sense. Notice, as
is usual with computer programming, that
everything starts counting from zero.

Back to our program. Once again if we RUN at
this point nothing wil l happen as we sti l l need to
add a few more bits elsewhere.

First we add a call to a new procedure cal led
DrawEnemy in the main loop:

// MagPi Game

PROC Setup

CYCLE

PROC CheckControls

PROC DrawShip

PROC DrawEnemy

UPDATE

REPEAT

END

The fol lowing code is the actual procedure.
Once again add this right after the END
statement:

DEF PROC DrawEnemy

FOR eID = 0 TO EnemyMax CYCLE

IF Enemy(eID, 3) THEN

Enemy(eID, 1) = Enemy(eID, 1) -

Enemy(eID, 6)

EY = Enemy(eID, 2) + COS

(Enemy(eID, 1)) * Enemy(eID, 4) * 10

plotSprite (Enemy(eID, 0),

Enemy(eID, 1), EY, 0)

ENDIF

REPEAT

ENDPROC

RUN <F3> the program to see how things are
looking. Al l going well you should now have wave
after wave of very
scary rocks flying
across the screen.
Press <ESC> to stop
the program when you
have seen enough.

PROC DrawEnemy explanation

The PROC DrawEnemy section looks real ly
complicated but when broken down it is, as
always, easier than is first apparent.

FOR eID = 0 TO EnemyMax CYCLE

When the procedure is cal led it sets up a FOR
LOOP to go through al l 64 enemy sprites
(EnemyMax is set to 63 and as we start counting
from 0 this makes 64 in total) .

IF Enemy(eID, 3) THEN

Enemy(eID, 1)=Enemy(eID, 1)-Enemy(eID, 6)

The IF statement checks if the enemy is active or
not. I f i t is then we reduce the X position
Enemy(eID,1) by the speed stored in
Enemy(eID,6).

EY = Enemy(eID, 2) + COS (Enemy(eID, 1)) *

Enemy(eID, 4) * 10

I don't l ike this bit as it makes me sound clever,
and I 'm not, but here goes. We are working out
the Y position using the cosine of the X position
(remember sine waves from Physics lessons).
This causes the Y position to go up and down.
Enemy(eID,4) gives us a variable to adjust the
strength of the wave (the height) .

39

plotSprite (Enemy(eID, 0), Enemy(eID, 1),

EY, 0)

As the X position is always moving to the left, a
simple wave motion is formed. I f you actual ly are
clever then you can work out ways to make very
complex patterns. Simple waves are about as
much as I can manage!

Adding fire power

Just one last thing to do this month and that is to
add the promised fire power. We are going to
keep it simple as, once again, it would take too
much space to do anything real ly fancy.. . but this
wil l give you something to work with.

Add a call to a new procedure cal led
DrawBullet in the main loop:

// MagPi Game

PROC Setup

CYCLE

PROC CheckControls

PROC DrawShip

PROC DrawEnemy

PROC DrawBullet

UPDATE

REPEAT

END

In the CheckControls procedure we also add
new code and a call to procedure Bullet to fire
bul lets:

RightKey = scanKeyboard (scanRight)

SpaceKey = scanKeyboard (scanSpace)

IF SpaceKey AND NOT Fire THEN

PROC Bullet

IF UpKey AND ShipY <= (gHeight -

getSpriteH (Ship)) THEN

ShipY = ShipY + 4

ShipID = 2

ENDIF

Add the fol lowing code to the end of the DEF
PROC Setup procedure:

EnemyCount = EnemyCount + 8

REPEAT

DIM Shot(3)

Shot(0) = newSprite (1)

loadSprite ("Bullet. bmp", Shot(0), 0)

setSpriteTrans (Shot(0), 255, 0, 255)

Fire = 0

ENDPROC

Final ly add the DrawBullet and Bullet
procedures directly below the END statement.
These two procedures display the bul let and
work out if i t has hit anything with the
spriteCollidePP (Shot(0), 2) command.
More on this in a minute, but for now get busy
and enter the fol lowing after the END statement:

DEF PROC DrawBullet

IF Shot(1) > gWidth THEN

hideSprite (Shot(0))

Shot(3) = 0

Fire = 0

ENDIF

IF Shot(3) THEN

Shot(1) = Shot(1) + 6

plotSprite (Shot(0), Shot(1),

Shot(2), 0)

Hit = spriteCollidePP (Shot(0), 2)

IF Hit > 0 AND Hit <= 64 THEN

Enemy(Hit - 1, 3) = 0

hideSprite (Hit)

hideSprite (Shot(0))

Shot(3) = 0

Fire = 0

ENDIF

ENDIF

ENDPROC

DEF PROC Bullet

Fire = 1

Shot(1) = ShipX + getSpriteW (Ship) + 8

Shot(2) = ShipY + getSpriteH (Ship) / 2

- 10

Shot(3) = 1

ENDPROC

40

The Bullet procedure is very straightforward as
it simply works out where the bul let should
appear based on the current position of the
player's ship. The DrawBullet procedure has a
lot more going on and introduces several new
sprite commands.

First, i f the bul let goes off the screen then we set
it to inactive and hide the sprite with the
hideSprite(Shot(0)) command.

Hit = spriteCollidePP(Shot(0), 2) checks
the sprite to see if i t is in contact with any other
sprite. I f i t is then it stores that sprite ID into the
variable Hit . We then check to see if the sprite
is a Rock. I f so, we hide both the rock and the
bul let and set them both to inactive so we don’t
draw them again elsewhere. We also reset the
Fire variable so we can shoot again.

There are two kinds of col l ision detection -
spriteCollidePP(ID, accuracy) and
spriteCollide(ID) . The PP stands for "pixel
perfect" so very accurate col l isions can be
checked. The standard version just checks the
sprite’s bounding box.

Coming up...

That's al l we have got space for this month,
actual ly I might be in trouble for taking up so
much already!

Next issue wil l see the final part in this series. I
hope to wrap things up with a few more
col l isions, scoring plus Start and Game Over
scenes.

I f you have not already noticed, in the next issue
we are, in association with the very nice people
at The MagPi, running a competition for the best
game entry submitted using FUZE BASIC on a
Raspberry Pi. Remember, you can download the
FUZE BASIC boot image and Programmer's
Reference Guide for free from the Resources
page at http://www.fuze.co.uk.

COMPETITION
TEASER

In the next issue, the folks at FUZE are planning

to run a FUZE BASIC programming competition,

with an incredible £500 of prizes!

First prize is the amazing FUZE T2-R kit, worth

£230. Not only does this have everything you

need to maximise your enjoyment of the

Raspberry Pi, i t also includes an OWI

programmable robotic arm kit!

Second prize is the superb FUZE T2-A kit, worth

£1 80. Again, this contains everything you need

including a Raspberry Pi Model B, solderless

breadboard, various electronic components, SD

card with FUZE BASIC, printed Programmer's

Reference Guide and much more!

Third prize is the excel lent FUZE T2-C kit for

your Raspberry Pi. Worth £80, this kit contains

the FUZE case, keyboard, integrated USB hub,

FUZE I/O board and power supply.

Detai ls of the prizes can be found at

http://www.fuze.co.uk/products.

In this series you wil l learn everything that you

need, but if you want to give yourself a head start

you can download the FUZE BASIC

Programmer's Reference Guide from

http://www.fuze.co.uk/resources-2/.

http://www.fuze.co.uk/products
http://www.fuze.co.uk/resources-2/
http://www.fuze.co.uk

http://www.fuze.co.uk

42

SKILL LEVEL : ADVANCED

W. H. Bell

MagPi Writer

7 - Operator overloading

The values contained in simple variables, such as int or float , can be added together using the mathematical

operators that were introduced in the C Cave article in Issue 4 of The MagPi. This functional ity can be extended

to objects by the principle of operator overloading. Before continuing, it may be helpful to read through the

introduction to C++ classes in Issues 23 and 24 of The MagPi.

Operators come in many shapes and sizes. There are mathematical operators, binary operators, relational

operators, pointer syntax, stream operators, etc.. Each of these can be implemented as a function that deals with

objects of a particular class. Since an operator that deals with objects is a function, the function could perform

complicated operations to load data from disk or over the network before returning the result. Hopeful ly, the

author of the C++ class has written sensible operator functions or provided documentation.

This tutorial introduces two simple mathematical and stream operator functions. The tutorial assumes that g++

and make have been instal led. Using the latest Raspbian image, these can be instal led by typing:

sudo apt-get install -y g++ make

Two-dimensional vector

The power of operator overloading can be demonstrated with a simple example of numerical operators. In some

mathematical problems one might have to use a two-dimensional vector, which has x and y components. From

Issues 23 and 24, it is clear that a class can be written that contains x and y components as data members of a

class. However, one would ideal ly l ike to be able to add vectors together or subtract them in a straight forward

manner. This can be achieved by writing functions for the operators + and - . Create a new fi le cal led

TwoVector. h and add the source code at the top of the next page. Then save the fi le.

43

This class declaration includes three operator functions that operate on objects: to add, subtract and assign

values. The class declaration also contains a constructor. The default values given in the constructor declaration

are used if parameters are omitted when the constructor is cal led. There is a function to return the resultant of

the vector, a function to return the angle of the vector in the x-y plane, a function to al low the vector to be rotated

about itself and two functions that return the values of x and y components respectively. The class also contains

two private data members that are present to store the values of the x and y components of the vector.

The const keyword is careful ly used, to al low appropriate usage of the objects created. For example, functions

that do not change values stored in the data members can safely be const . The const member functions are

indicated by the keyword const , which is present just before the semicolon in each const function definition.

These functions can be called from a const object of TwoVector type or from a normal object of TwoVector

type. The operator functions use const references as parameters to avoid unnecesary copy constructors and to

indicate that the operator wil l not change this parameter.

Now that the header fi le has been created, the implementation of the other member functions of the TwoVector

class is needed. Therefore, create a new fi le cal led TwoVector. cpp and add:

#ifndef TWOVECTOR_H

#define TWOVECTOR_H

class TwoVector {

public:

TwoVector(double x = 0. , double y = 0.); // Constructor with default values

double resultant(void) const; // Resultant

double angle(void) const; // Angle of vector in x-y plane

void rotate(double theta); // Rotate the two vector about itself

TwoVector operator+(const TwoVector& twoVector) const; // Addition

TwoVector operator-(const TwoVector& twoVector) const; // Subtraction

TwoVector& operator=(const TwoVector& twoVector); // Assignment

double x(void) const { return m_x; } // Return the x component

double y(void) const { return m_y; } // Return the y component

private:

double m_x; // x component of the vector

double m_y; // y component of the vector

};

#endif

#include "TwoVector. h"

#include <cmath>

TwoVector: : TwoVector(double x, double y):

m_x(x), // assign the value of x to m_x

m_y(y) { // assign the value of y to m_y

}

double TwoVector: : resultant(void) const {

double r = std: : pow(m_x, 2) + std: : pow(m_y, 2); // The sum of the squares of m_x and m_y

if(r > 0.) r = std: : sqrt(r); // The sqrt only makes sense for values greater than zero

return r;

}

44

When a member function or data member is private within a class definition, then it can be accessed directly by

any objects instantiated from the class but cannot be accessed from objects that are instantiated from other

classes or from functions outside class definitions. There is an exception to this, which is discussed later in this

tutorial . Writing operator functions as class member functions simplifies the content of the operator member

functions, since the private data members can be directly accessed.

The assignment operator is the simplest of the three operator functions. The values stored in the x and y

components of the vector on the right hand side (rhs) of x=y are assigned to the data members of the object

(which is on the left hand side of this equation). The this pointer is used to refer to this specific instantiation of

the class. The addition and subtraction operators use the assignment operator to create a copy of the object

before the values of the data members are changed. When the object is instantiated without arguments, the

default constructor parameters are used. Then the assignment function is cal led to assign the values. For the

operators + and - the equations are z=x+y and z=x-y, where al l of the object types are the same, y is passed

into the member function as the const reference rhs and x refers to the object for which the member function is

cal led.

The final piece of C++ needed to produce a working example is the main() function. Create a new fi le cal led

main. cpp and add the C++ code at the top of the next page.

double TwoVector: : angle(void) const {

double r = resultant(); // Get the resultant

if(r <= 0.) return 0. ;

return std: : acos(m_x/r); // angle in radians

}

void TwoVector: : rotate(double theta) {

double x = m_x, y = m_y; // Store the current values;

m_x = x*std: : cos(theta) - y*std: : sin(theta); // Rotate the x component

m_y = x*std: : sin(theta) + y*std: : cos(theta); // Rotate the y component

}

TwoVector TwoVector: : operator+(const TwoVector& rhs) const {

TwoVector twoVector = *this; // Copy this object using the assignment operator

twoVector. m_x += rhs. m_x; // Add the m_x value in this object to the other object

twoVector. m_y += rhs. m_y; // Add the m_y value in this object to the other object

return twoVector; // Return the resulting vector

}

TwoVector TwoVector: : operator-(const TwoVector& rhs) const {

TwoVector twoVector = *this; // Copy this object

twoVector. m_x -= rhs. m_x; // Subtract the m_x value from the other object from this class

twoVector. m_y -= rhs. m_y; // Subtract the m_y value from the other object from this class

return twoVector; // Return the resulting vector

}

TwoVector& TwoVector: : operator=(const TwoVector& rhs) {

m_x = rhs. m_x; // Assign the m_x value from the other object

m_y = rhs. m_y; // Assign the m_y value from the other object

return *this; // Return the value of this object

}

45

The main() function makes use of the three, four, five triangle, to help to make the value of the resultant and the

angle more intuitive during debugging. The example creates a vector cal led vec1 that has an x component of

three and a y component of four. This implies that the resultant is five. The values in vec1 are then assigned to

the values of vec2 , which is therefore a numerical copy of the first vector. The components of vec2 are printed,

the resultant of vec1 is printed and the angle in the x-y plane is printed for vec2 . The function angle() returns

the value in radians, which is then converted into degrees before being printed on the screen. The vector vec2

is then rotated by 90 degrees and the resulting angle in the x-y plane is printed. Final ly, vec2 is subtracted from

vec1 and the resulting x and y components are printed on the screen. Once the operator functions have been

written, the mathematical usage of the operators becomes intuitive.

To complete the example program and produce an executable that can be run, create a fi le cal led Makefile in

the same directory as the other C++ source fi les and add:

#include "TwoVector. h"

#include <iostream>

#include <cmath>

using namespace std;

int main() {

TwoVector vec1(3. , 4.); // Using the 3, 4, 5 triangle.

TwoVector vec2 = vec1; // Copy vec1

std: : cout << "vec2{x=" << vec2. x()

<< ", y=" << vec2. y() << "}" << std: : endl;

std: : cout << "vec1. resultant()=" << vec1. resultant() << std: : endl;

std: : cout << "vec2. angle()=" << (vec2. angle()/M_PI)*180. << " degrees" << std: : endl;

vec2. rotate(M_PI/2. 0); // Rotate anti-clockwise by 90 degrees

std: : cout << "After rotation vec2{x=" << vec2. x() << ", y=" << vec2. y()

<< "}, vec2. angle()=" << (vec2. angle()/M_PI)*180. << " degrees" << std: : endl;

vec1 = vec1 - vec2;

std: : cout << "vec1-vec2 = {x=" << vec1. x()

<< ", y=" << vec1. y() << "}" << std: : endl;

return 0;

}

CC=g++

TARGET=op

OBJECTS=main. o TwoVector. o

$(TARGET): $(OBJECTS)

@echo "** Linking Executable"

$(CC) $(OBJECTS) -o $(TARGET)

clean:

@rm -f *. o *~

veryclean: clean

@rm -f $(TARGET)

%. o: %. cpp

@echo "** Compiling C++ Source"

$(CC) -c $(INCFLAGS) $<

46

where the l ines should be indented by single tab characters and there should be no spaces in front of any other

l ines. Save the fi le and then type make to bui ld the executable and . /op to run it. More information on Makefi les

can be found in Issue 7 of The MagPi.

Output stream operators

In the main() function in the last example, each component of the vectors is printed by retrieving the value of the

component and then printing it to the screen. While this works, implementing these function cal ls in many places

can quickly become a waste of time. Therefore, writing a function that al lows an object to be printed directly, e.g.

std: : cout << vec1 << std: : endl;

may save time. Unl ike the mathematical functions, this operator function is not part of the class. However, since

it relates to the class it is intuative to put it into the same header fi le as the TwoVector class definition. Open the

TwoVector. h header fi le and modify the fi le to include the two output stream lines given below:

Then add the iostream header fi le at the top:

The output stream operator function is not part of the class TwoVector . To print the values stored in the

private data members of the TwoVector object, the output stream function needs to access these values.

While this is possible by cal l ing the x() and y() functions to retrieve these values, there is a small overhead for

these function cal ls. Therefore, to make the code sl ightly simpler, the output stream function is defined as a

friend within the class declaration. This means that it wi l l be able to access the private data members as if

they were public data members. The friend keyword can be used with classes as well as functions. The

friend keyword also enables access to protected functions or data members and private functions.

Now open the TwoVector. cpp fi le and at the end of the fi le add:

This is the implementation that prints the values into the stream. Next, try replacing the l ines in the main. cpp

fi le that print the components with:

std: : cout << vec1 << std: : endl;

friend std: : ostream& operator<<(std: : ostream& os, const TwoVector& vec); // New line to add

private:

double m_x; // x component of the vector

double m_y; // y component of the vector

};

std: : ostream& operator<<(std: : ostream& os, const TwoVector& vec); // New line to add

#ifndef TWOVECTOR_H

#define TWOVECTOR_H

#include <iostream>

std: : ostream& operator<<(std: : ostream& os, const TwoVector& vec){

os << "{" << vec. m_x << ", " << vec. m_y << "}" ;

return os;

}

http://www.dexterindustries.com

The MagPi is a trademark of The MagPi Ltd. Raspberry Pi is a trademark of the Raspberry Pi Foundation. The MagPi magazine is
collaboratively produced by an independent group of Raspberry Pi owners, and is not affiliated in any way with the Raspberry Pi
Foundation. It is prohibited to commercially produce this magazine without authorization from The MagPi Ltd. Printing for non commercial
purposes is agreeable under the Creative Commons license below. The MagPi does not accept ownership or responsibility for the content
or opinions expressed in any of the articles included in this issue. All articles are checked and tested before the release deadline is met but
some faults may remain. The reader is responsible for all consequences, both to software and hardware, following the implementation of
any of the advice or code printed. The MagPi does not claim to own any copyright licenses and all content of the articles are submitted with
the responsibility lying with that of the article writer. This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported License. To view a copy of this license, visit:

http://creativecommons.org/licenses/by-nc-sa/3.0/

Alternatively, send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041 , USA.

Have Your Say...
The MagPi is produced by the Raspberry Pi community, for the Raspberry Pi
community. Each month we aim to educate and entertain you with exciting projects for
every ski l l level. We are always looking for new ideas, opinions and feedback, to help us
continue to produce the kind of magazine you want to read.

Please send your feedback to editor@themagpi.com, or post to our Facebook page at
http://www.facebook.com/MagPiMagazine, or send a tweet to @TheMagP1 . Please
send your article ideas to articles@themagpi.com. We look forward to reading your
comments.

PPRRIINNTT EEDDIITTIIOONN AAVVAAIILLAABBLLEE
WWOORRLLDDWWIIDDEE

The MagPi is avai lable for FREE from http://www.themagpi.com, from The MagPi iOS
and Android apps and also from the Pi Store. However, because so many readers have
asked us to produce printed copies of the magazine, we are pleased to announce that
printed copies are now regularly avai lable for purchase at the fol lowing Raspberry Pi
retai lers.. .

Americas EMEA AsiaPac

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.themagpi.com
https://www.modmypi.com/the-magpi-magazine
http://www.pi-supply.com/product-category/books-and-magazines/the-magpi-magazine/
http://thepihut.com/collections/the-magpi-raspberry-pi-magazine
https://www.adafruit.com/index.php?main_page=adasearch&q=the+magpi
http://www.buyraspberrypi.com.au/shop/magpi-issue-16/
http://www.facebook.com/MagPiMagazine
mailto:articles@themagpi.com
http://swag.raspberrypi.org/products/magpi
mailto:editor@themagpi.com
http://twitter.com/TheMagP1

