Matemáticas Singapur

Pedro Ramos Alonso Departamento de Física y Matemáticas Universidad de Alcalá

pedro.ramos@uah.es

CFIE de León

¿Qué son las "matemáticas Singapur"?

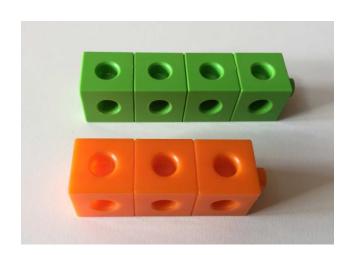
* Sobre la enseñanza de las matemáticas en Singapur en los años 70:

https://youtu.be/3kxs5hOHpbo

- * Sus errores:
 - Exceso de cálculos tediosos.
 - Aprendizaje rutinario de procedimientos, sin entenderlos.
 - Aprendizaje memor 'istico.
- * El desarrollo de lo que se conoce como "método Singapur" fue la respuesta.
- * Basado en ideas "clásicas" de la didáctica de las matemáticas occidental.

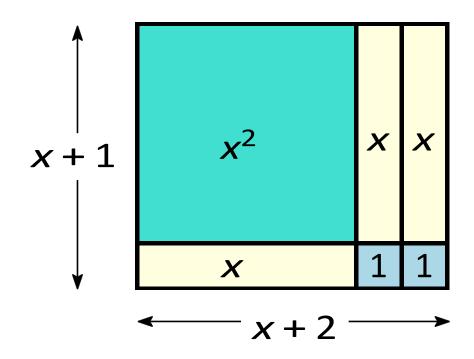
1 El aprendizaje en tres etapas (Jerome Bruner)

(1)



Concreta

1 El aprendizaje en tres etapas (Jerome Bruner)



(2) Pictórica (gráfica, visual)

1 El aprendizaje en tres etapas (Jerome Bruner)

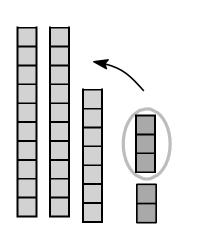
(3)
$$(x+1)(x-2) = x^2 - x - 2$$

Abstracta (simbólica)

CPA

2 El aprendizaje de los procedimientos y la comprensión de los conceptos deben trabajarse en paralelo.

Richard Skemp: Relational understanding and instrumental understanding (1976)

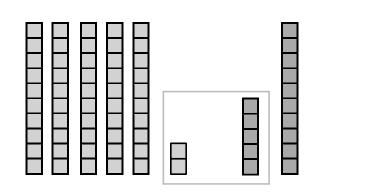


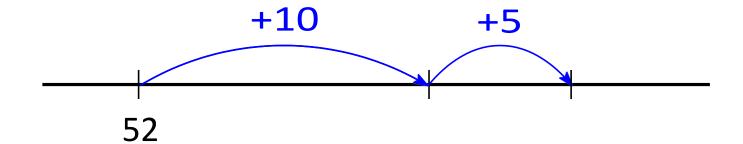
$$27 + 5 = 30 + 2 =$$
 $3 + 2$

$$\begin{array}{r} 1 \\ 27 \\ + 5 \\ \hline 32 \end{array}$$

3 Variedad en las presentaciones (Zoltan Dienes)

La comprensión de un concepto es mejor si se presenta desde distintos puntos de vista.





4 El andamiaje y la zona de desarrollo próximo (Vygotsky)

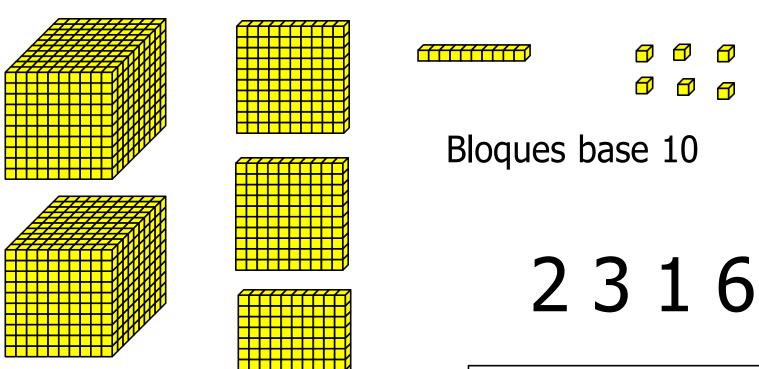
En lugar de ir diciendo al alumno "esto se hace as'ı", se le proponen actividades que estén en su zona de desarrollo próximo.

$$\frac{1}{2} + \frac{1}{3} = \frac{2}{6} + \frac{2}{6} = \frac{2}{6}$$

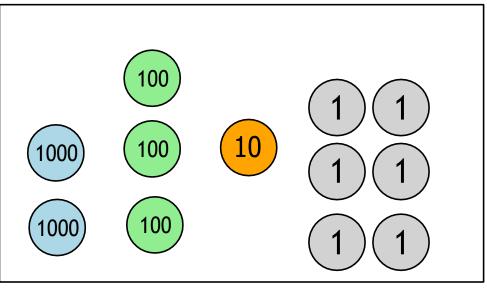
Fundamentos metodológicos (resumen)

- El aprendizaje en tres etapas (Jerome Bruner)
- El aprendizaje de procedimientos y la comprensión de los conceptos deben ir en paralelo (Richard Skemp)
- La importancia de la variedad en las presentaciones (Zoltan Dienes)
- El andamiaje y la zona de desarrollo próximo (Lev Vygotski)
 - Y un elemento adicional:
- La importancia de la verbalización.

¿Desde dónde empezamos en 1ºESO?



Fichas numéricas



La recta numérica

* Sitúa (de forma aproximada) los números 870, 6, 125, 483.

0 1000

* Sitúa (de forma aproximada) los números 870100, 6005, 250037, 48025.

0 1000000

La recta numérica

* La suma y la resta en la recta numérica (vacía).

$$527 + 45$$

45 - 18

425 - 37

El cálculo mental (cálculo razonado)

"number talks"

* ¿Cómo y cuánto hay que calcular?

El sentido numérico

* ¿Cómo podemos hacernos a la idea de cuánto es 1 millón?

* Dos propuestas:

- 1. Si ponemos a 1 millón de personas en fila, ¿qué longitud aproximada tendr í la fila?
- 2. Una manifestación "compacta" de 1 millón de personas, ¿qué superficie ocuparía?

La multiplicación

* Las tablas de multiplicar.

No deberían convertirse en un obstáculo para los alumnos con más dificultades.

¿Propuestas?

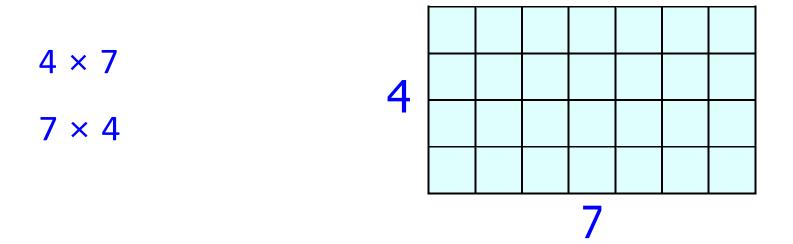
+56

Dados virtuales: https://dice.virtuworld.net/

La multiplicación

* Las propiedades de la multiplicación.

La propiedad distributiva.



El modelo de área de la multiplicación

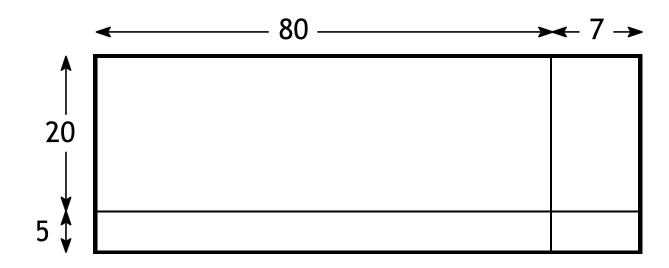
La propiedad distributiva

$$6 \times 17 = 6 \times (10 + 7)$$

$$= 6 \times 10 + 6 \times 7$$

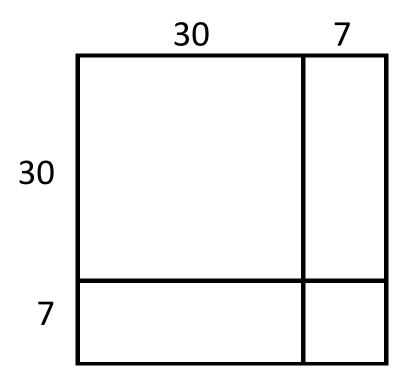
$$10$$

$$87 \times 25 = (80 + 7) \times (20 + 5) =$$



Preparación al cuadrado del binomio

$$37^2 = (30 + 7)^2 =$$



* Para alumnos con gusto por el cálculo: el cálculo mental del cuadrado de un número de dos cifras.

La mentalidad de crecimiento

* Growth mindset.

Mucha evidencia desde la psicolog'ıa cognitiva. Carol Dweck

- * Un resumen de un minuto:
 - Mentalidad fija: soy bueno en matemáticas, soy malo en matemáticas (o en otra disciplina).
 - Mentalidad de crecimiento: con trabajo y esfuerzo puedo mejorar.

* Más información:

https://www.youcubed.org/resources/mathematical-mindsets/

(La página youcubed.org tiene muchos materiales interesantes)

La mentalidad de crecimiento

- * Algunas observaciones básicas:
 - ¿Cómo gestionamos los errores de los alumnos?
 - * ¿Cómo elogiamos a los alumnos?
 - * La relación motivación desempeño
 - Las tareas "low floor, high ceiling"
 suelo bajo, techo alto
- * Dos referencias:
 - Cecilia Calvo Pesce: tareas "ricas"
 - D. T. Willingham: ¿Por qué a los niños no les gusta ir a la escuela?

La división

* ¿Qué significa la división $5 \div \frac{1}{3}$? ¿Podemos plantear una pregunta, un problema, que se resuelva con esta operación?

* ¿Cuál es el origen de la dificultad?

"dividir es repartir"

- * Queremos hacer 3 grupos iguales.
 - ¿Cuántas fichas habrá en cada grupo?

* Queremos hacer grupos de 3 fichas.

¿Cuántos grupos podremos hacer?

$$15 \div 3$$

$$15 \div 3$$

La división con resto

* Problema: Un astronauta empezó su viaje un martes a las 9 de la mañana. Si el viaje duró 115 horas, ¿qué día y a qué hora aterrizó?

$$D = d \times c + r$$

"3 grupos de 24"

* Si el 10/01/2022 es lunes, ¿qué día será el 10/01/2023?

Un comentario sobre la multiplicación

* "multiplicado por" ←→ "veces – grupos de"

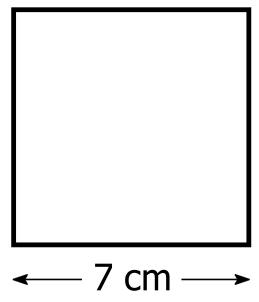
* ¿Qué significa 2 × 3?

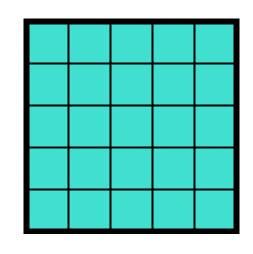
 Creo que esto tiene implicaciones en el estudio de las fracciones y en el álgebra.

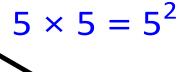
Potencias

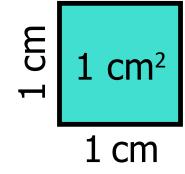
* La conexión con la geometría es fundamental.



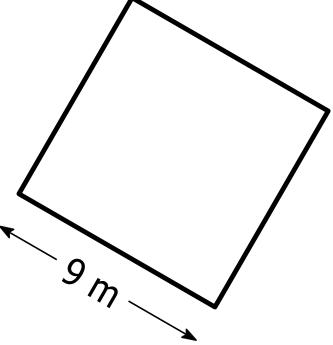




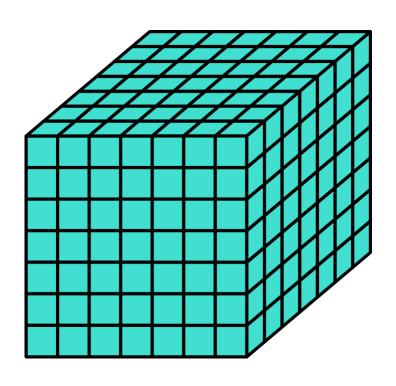




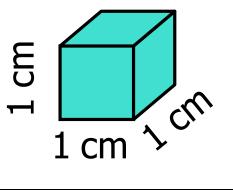
 $1 \text{ cm} \times 1 \text{ cm} = 1 \text{ cm}^2$



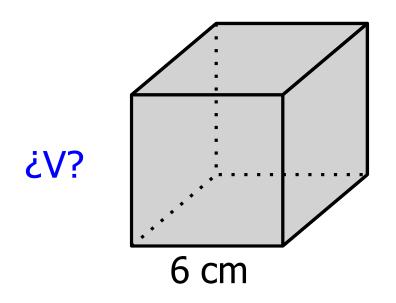
Potencias



$$7 \times 7 \times 7 = 7^3$$



$$1 \text{ cm} \times 1 \text{ cm} \times 1 \text{ cm} = 1 \text{ cm}^3$$



Ra'ices

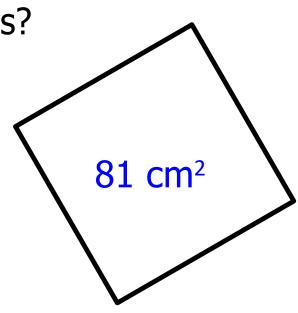
* Estudiar una operación y su inversa de forma conjunta facilita la comprensión.

*
$$\sqrt{\frac{16}{16}}$$
 = 4 porque 4^2 = 16 (4 × 4 = 16)

* De nuevo, la conexión con la geometría ayuda.

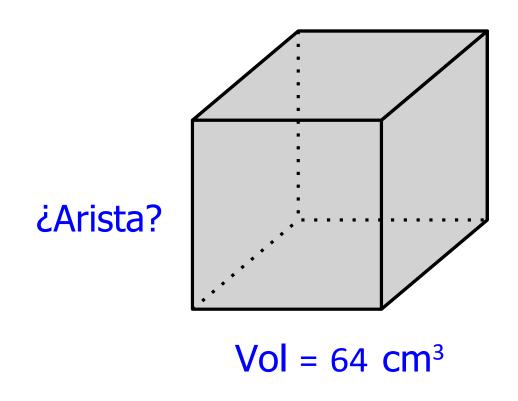
* ¿Cuánto mide el lado de estos cuadrados?

49 cm²



Ra'ices

*
$$\sqrt[9]{125} = 5$$
 porque $5^3 = 125$ (5 × 5 × 5 = 125).



 Hasta aquí lo que debería venir (desde mi punto de vista) aprendido en primaria.

$$a^{n}$$
, $n > 3$

- * En nuestro curr'iculo:
 - En 1°, exponente natural.
 - En 2°, exponentes negativos.
 - En 3°, exponentes racionales.

¿Es eficiente?

- * La alternativa de Singapur:
 - En 1º, solo se usa en factorización. Estudio muy introductorio.
 - En 3°, estudio general.

¿Ventajas? ¿Inconvenientes?

Propiedades

*
$$5^4 \times 5^3 = (5 \times 5 \times 5 \times 5) \times (5 \times 5 \times 5) =$$

Es un contenido en que el método inductivo funciona bien.

* Dedicar atención a los errores conocidos:

$$2^4 + 2^3 =$$

$$* \frac{5^4}{5^3} = \frac{5 \times 5 \times 5 \times 5}{5 \times 5 \times 5} = * (5^3)^2 =$$

* ¿Cómo trabajar los errores con la simplificación?

Una idea: $\frac{5 \times 5}{}$

$$5 + 2$$

Propiedades

$$* (3 \times 5)^2 =$$

$$* (3 + 5)^2 =$$

Ra'ices

* Comprensión – Estimación – Cálculo razonado

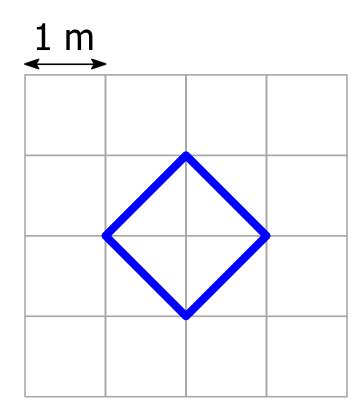
* ¿Qué sabrías decir de $\sqrt{500}$? ¿Y de $\sqrt{1000}$?

 Con ayuda de una calculadora como la de la figura aproxima, con dos cifras decimales, estas ra íces cuadradas:

 $\sqrt{\frac{115}{0.7}}$

Ra'ices

* ¿Cuánto mide el lado del cuadrado?



Factorización y raíces

* ¿Por qué es conveniente tratarlo?

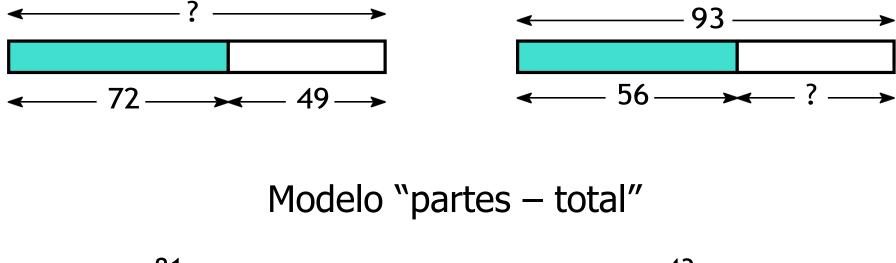
*
$$441 = 3^2 \cdot 7^2 \rightarrow \frac{\sqrt{441}}{441} =$$

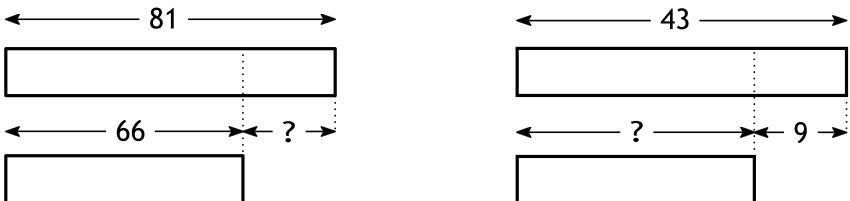
*
$$5625 = 3^2 \cdot 5^4 \rightarrow \frac{\sqrt{5625}}{}$$

* ¿Cómo son las factorizaciones de los cuadrados perfectos?

$$\sqrt{3^2 + 4^2} =$$

El modelo de barras





Modelo de comparación

Los más sencillos. Se introducen en 2º EP

Problema

 Marta tiene el doble de dinero que Pablo, y Juan tiene 13 euros menos que Marta. Si entre los tres tienen 192 euros, ¿cuánto dinero tiene cada uno? (4º Primaria)

Problema

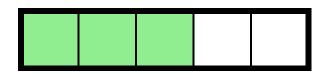
* Luc´ıa tiene el triple de dinero que Pablo y cuando le da 37 euros pasa a tener el doble. ¿Cuánto dinero tenía Lucía al principio?

Modelo de barras

- * Herramienta de pensamiento visual.
- Será de gran ayuda con las fracciones y con la introducción al álgebra.

Las fracciones: un objeto, varias interpretaciones

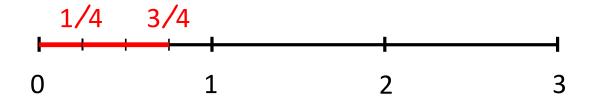
(1) Parte de un todo



Hemos coloreado los 3/5 de ...

(2) Una cantidad (un número, un punto de la recta numérica)

$$\frac{3}{4}$$
?

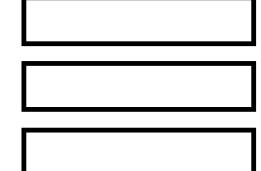


El denominador fija la unidad

El numerador, cuántas unidades tomo

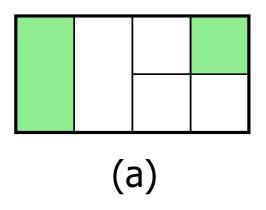
(3) Un reparto (división)

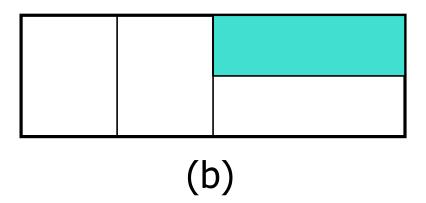
Queremos repartir 3 chocolatinas entre 5 niños. ¿A cuánto toca cada uno?

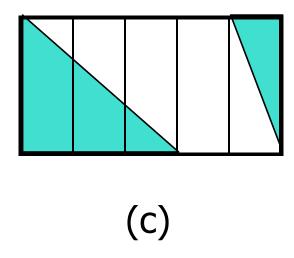


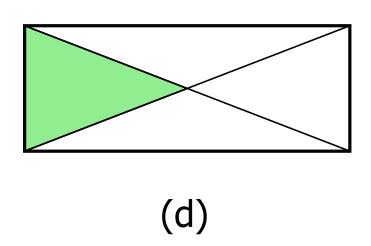
Algunos ejemplos

* ¿Qué fracción del área total está coloreada en cada una de las figuras?









Definición de fracción

* Una fracción es una expresión de la forma son números enteros y b = 0.

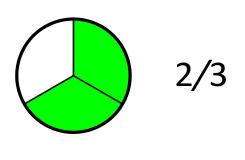
numerador

denominador no es un número

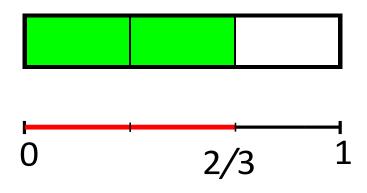
donde a y b

$$\frac{1}{2} + \frac{1}{3} =$$

1 medio + 1 tercio =



Parte de un todo



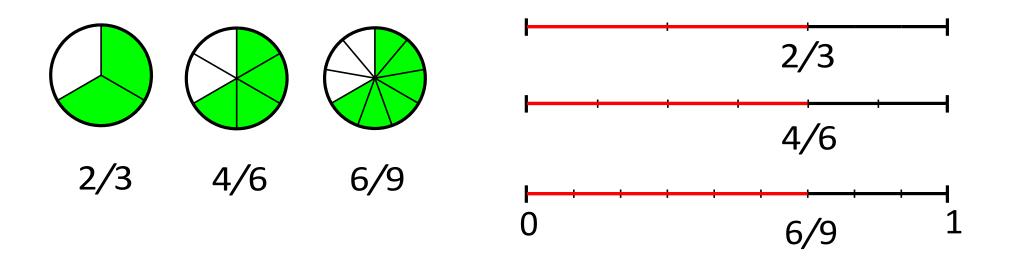
Punto de la recta numérica Cantidad - Medida

* Las dos interpretaciones son necesarias.

Fracciones equivalentes

* Las fracciones 2/3, 4/6, 6/9, ... representan la misma cantidad.

Decimos que son fracciones equivalentes.



Fracciones equivalentes

* Es un concepto básico, y es fundamental que se entienda bien.

* Una herramienta muy útil: el muro de fracciones.

Muro de fracciones

1																		
$\frac{1}{2}$										$\frac{1}{2}$								
$\frac{1}{3}$							-	1 3				$\frac{1}{3}$						
		1 4					1 4				1 4							
1 5					<u>L</u>		1 5			5			<u>1</u> 5		1/5			
<u>1</u> 6			$\frac{1}{6}$			<u>1</u> 6			$\frac{1}{6}$			$\frac{1}{6}$			$\frac{1}{6}$			
$\frac{1}{7}$	1 7		<u>1</u> 7			1 7		-	·-		1 7		1 7			$\frac{1}{7}$		
1 8	$\frac{1}{8}$ $\frac{1}{8}$			1 8			1 8		1 8			1 8	<u>L</u> 3		1/8		<u>1</u> 8	
1 9	1 9			<u>1</u> 9		$\frac{1}{9}$			1		<u>1</u> 9		<u>1</u> 9		<u>1</u> 9		<u>1</u> 9	
1 10	1	.0	1	1 0	-	10		1 10	$\frac{1}{10}$)	1/10		1/10		1 10		1/10	

Propuestas de actividades

* Fracciones equivalentes:

$$\frac{2}{3}$$

* Comparación de fracciones:

* Suma de fracciones:

$$\frac{1}{2} + \frac{1}{4} =$$

$$\frac{1}{2} + \frac{1}{3} =$$

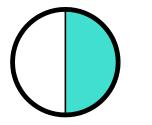
* Descomposición egipcia:

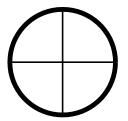
$$\frac{3}{5} = \frac{1}{\boxed{}} + \frac{1}{\boxed{}}$$

https://toytheater.com/fraction-strips/

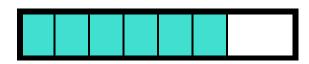
Propuestas de ejercicios

$$\frac{1}{2} = \frac{\square}{4}$$

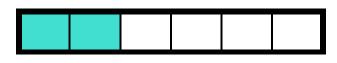




$$\frac{3}{4} = \frac{6}{4}$$

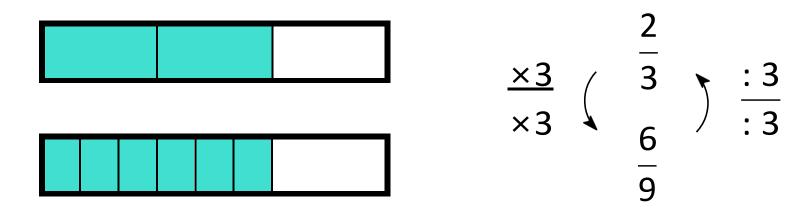


$$\frac{2}{6} = \frac{1}{6}$$



Fracciones equivalentes

* Una vez trabajado el significado también es necesario llegar a los procedimientos de todos conocidos, por supuesto.



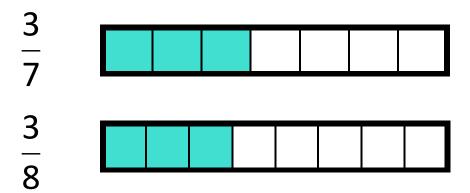
* ¿Y el caso general?

¿Son equivalentes las fracciones $\frac{8}{14}$ y $\frac{12}{21}$?

Comparación de fracciones

- * Muy relacionada con la equivalencia.

 Si queremos que los alumnos comprendan, y no que memoricen, hay que huir de "recetas" y comparar usando representaciones gráficas (o físicas).
- * El caso más sencillo: mismo denominador.
- * Siguiente paso: mismo numerador.



Comparación de fracciones

* Comparación con una fracción conocida:

a)
$$\frac{3}{4}$$
 y $\frac{2}{5}$

b)
$$\frac{7}{8}$$
 y $\frac{8}{9}$

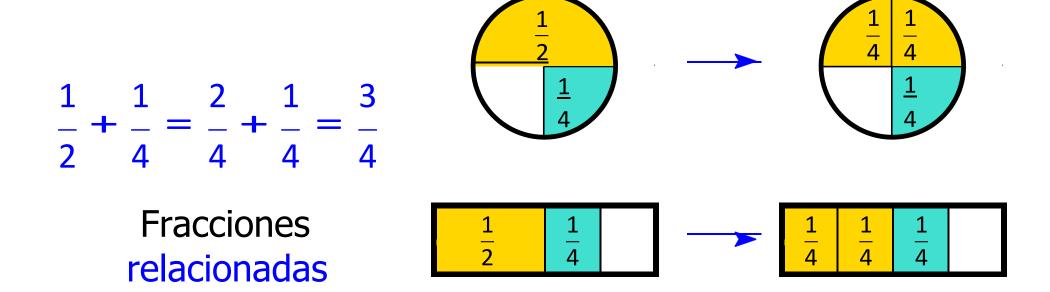
* ¿Es útil comparar fracciones sin recurrir a los decimales? ¿Por qué?

Suma y resta de fracciones

En lugar de "dar la receta", ayudar a dar pasos hacia ella.
 (Zona de desarrollo próximo – Vygotsky)

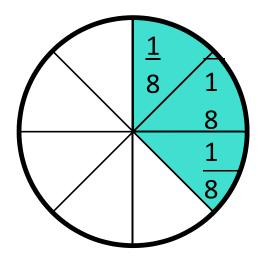
$$\frac{1}{2} + \frac{1}{3} = \frac{\boxed{}}{6} + \frac{\boxed{}}{6} =$$

* Es importante, al principio, mostrar el significado de lo que hacemos.



Suma y resta de fracciones

$$\frac{3}{8} - \frac{1}{4} =$$



* ¿Qué hacemos si esto genera dificultades?

Suma y resta de fracciones

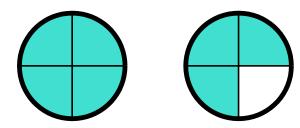
* El caso general:
$$\frac{1}{6} + \frac{3}{4} =$$

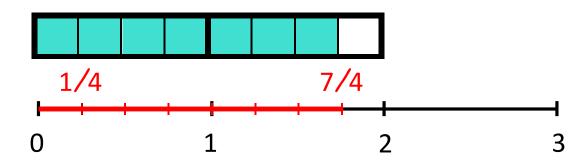
- * La meta es poder trabajar en el terreno simbólico. En algún momento la representación deja de ser necesaria.
- * ¿Un denominador común o el mínimo común denominador?
- * Un tema importante para la reflexión:

Razonamiento y comprensión ←→ Complejidad técnica

Fracciones impropias

* ¿Qué significa $\frac{7}{4}$?





La recta numérica

* Ayuda a entender que
$$\frac{7}{4} = 1 + \frac{3}{4}$$

¿Números mixtos?

* Esta interpretación será especialmente útil cuando aparezcan los números decimales.

Ejercicio

 Compara las fracciones 11/3 y 15/4 de varias formas, tantas como sea posible.

(Recuerda, sin recurrir a números decimales).

* ¿Y el caso general? Por ejemplo, $\frac{37}{4}$ =

Modelo de barras y fracciones

* En una hora se llenan 5/7 de un depósito. ¿Cuánto tiempo tarda en llenarse el depósito completo?

* Al principio ten 'iamos el triple de zumo de naranja que de zumo de piña. Después de bebernos 270 ml de cada hay 9 veces más de zumo de naranja que de zumo de piña. ¿Cuánto zumo de naranja había al principio?

Problemas

1. Una barra de 108 cm de largo se partió en dos piezas. Si sabemos que 3/5 del trozo más grande miden lo mismo que 3/4 del trozo más pequeño, ¿cuál es la longitud de cada uno de los trozos?

2. Luis y Nuria hicieron tarjetas durante dos días. El sábado Nuria hizo 19 tarjetas más que Luis. El domingo, Nuria hizo 20 tarjetas, y Luis hizo 15. Al acabar los dos d´ias, comprobamos que Nuria hizo 3/5 del total de las tarjetas. ¿Cuántas tarjetas hizo Luis?

Multiplicación de fracciones

Desde el punto de vista del algoritmo, multiplicar fracciones es más sencillo que sumarlas. Sin embargo, desde un punto de vista conceptual es mucho más complicado.

* Vamos a ir paso a paso:

2

i)
$$5 \times \frac{1}{3}$$

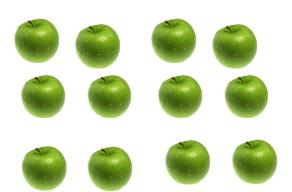
Es importante cómo la interpretamos, cómo la verbalizamos.

"cinco veces dos tercios"

Multiplicación de fracciones

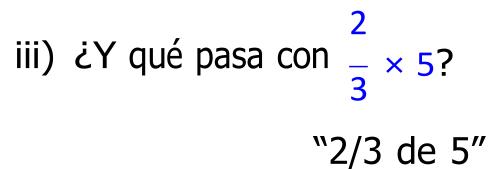
ii) Fracción de una cantidad: $\frac{2}{3} \times 12$

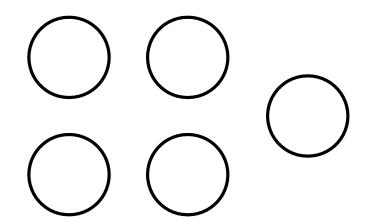
El significado de la fracción es el mismo que cuando hablamos de "dos tercios de tableta de..."



* ¿Cómo lo haría un alumno al que no le damos "instrucciones"?

Multiplicación de fracciones





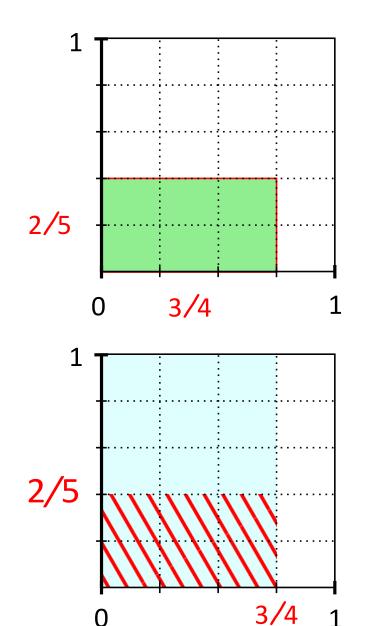


Multiplicación de fracciones. Modelo de área

$$\frac{3}{4} \times \frac{2}{5} = \frac{6}{20}$$

También aquí se puede ver que $\frac{2}{5} \times \frac{3}{4}$ significa 2/5 de 3/4.

¿3/4 de 2/5 es lo mismo que 2/5 de 3/4?



División de fracciones: primeros ejemplos

* Cuando el divisor es un número natural:

$$\frac{4}{5} \div 2 =$$

$$\frac{3}{5} \div 2 =$$

* Empezar æ'ımuestra que no todo es "raro" cuando aparecen las fracciones.

División de fracciones

* Piensa un problema o situación que le dé sentido a la operación 5 : __.
3

* ¿Cómo se puede calcular $5: \frac{2}{3}$.

Otra opción: común denominador

* Calcula la división de fracciones $\frac{7}{4} \div \frac{1}{2}$ reduciendo a común denominador e interpreta gráficamente el procedimiento.

* Dos opciones para la división de fracciones:

1.
$$\frac{3}{4} \div \frac{2}{5} = \frac{3}{4} \times \frac{5}{2} = \frac{15}{8}$$
2. $\frac{3}{4} \div \frac{2}{5} = \frac{15}{4} \times \frac{15}{20} = \frac{15}{8}$

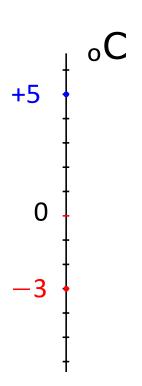
* ¿Ventajas e inconvenientes?

Los números enteros

* Concepto abstracto.

En el siglo XVII, muchos matemáticos no los consideraban números.

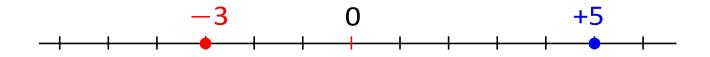
¿Es conveniente introducirlos usando contextos reales, o es mejor trabajar la abstracción?



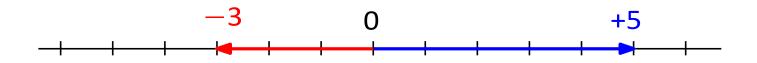
La temperatura a las 7 de la mañana era de 3 grados bajo cero. Ahora es de 5 grados. ¿Cuánto ha subido la temperatura?

Los números enteros

- Los números negativos, útiles en contextos cotidianos.
- La aritmética de enteros, creo que solo necesaria en el contexto algebraico/matemático.
- * La recta de los enteros (número como cantidad)



* La recta de los enteros (número como "medida")



Suma y resta de enteros

- * Veamos dos posibles representaciones:
 - en la recta numérica.
 - con fichas numéricas.
- Una cuestión previa: la confusión del signo como operador y el signo asignado al número.

$$-3 + 5 = (-3) \rightarrow (-3)$$

 $(+5) \rightarrow (+5)$

Suma y resta en la recta numérica

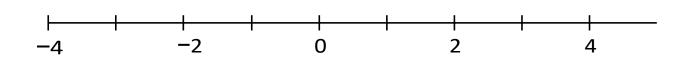
* La suma de enteros

$$(+2) + (+3) = +5$$

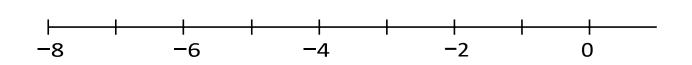
 $2 + 3 = 5$

https://www.wolframalpha.com/

$$(^{+}3) + (^{-}7) =$$

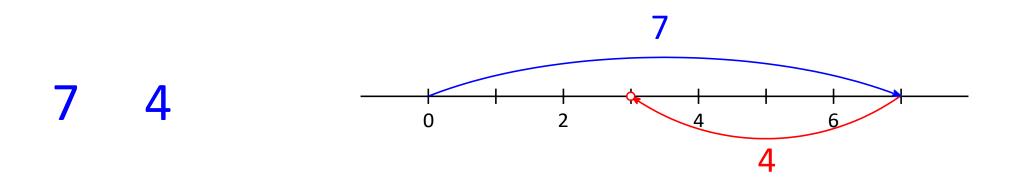


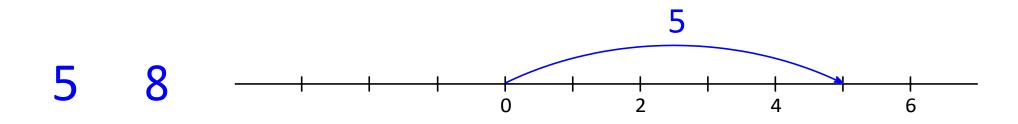
$$(^{-}3) + (^{-}5) =$$



Suma y resta en la recta numérica

* La resta de números naturales en la recta numérica.

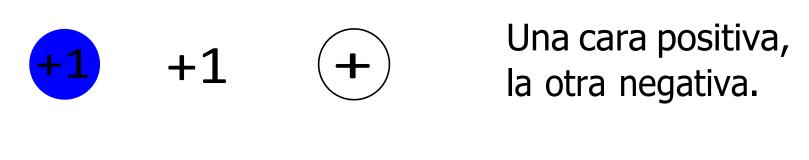




Suma y resta en la recta numérica

* La resta de enteros, analog 'ia con los naturales.

Suma y resta: fichas numéricas



- * Ideas básicas:
 - a) Sumar es añadir.

−1 es el opuesto de +1

Suma de enteros

* La suma no plantea problemas.

$$(^{-}3) + (^{-}5) =$$

$$(^{+}6) + (^{-}4) =$$

$$(^{+}4) + (^{-}7) =$$

Sobre la verbalización, ¿"tres negativo"?

¿Quizá para alumnos con dificultades?

Resta de enteros

* Restar es sumar el opuesto.

Se puede justificar con los casos "fáciles".

$$5-2=5-(^{+}2)=5+(^{-}2)=$$

$$3-5=3-(^{+}5)=3+(^{-}5)=$$

* Restar un número negativo.

$$5 - (^{-}2) = 5 + 2$$

$$(^{-}5) - (^{-}2) = -5 + 2$$

La resta como diferencia

* Obsérvese que en este modelo no hemos tratado todavía el significado de 5 − (−3) como "distancia" (con signo) entre 5 y −3.

- * La propuesta es tratarla en este momento, con problemas del tipo de variación de temperatura o ascensor.
 - Dificultad: el signo de la diferencia.
- * ¿Las dos ideas más importantes?
 - sumar un número negativo equivale a restar.
 - restar un número negativo equivale a sumar.

El producto de números enteros

* Hay que darle sentido a una expresión como (⁻2) · (⁻3), es decir, "−2 veces" −3.

* El resto de los casos, sencillos (al menos, pensados como "veces").

$$(^{+}2) \cdot (^{+}3) =$$

$$(^{+}2) \cdot (^{-}3) =$$

$$(^{-}2) \cdot (^{+}3) =$$

El producto de números enteros

* Para (-2) · (-3): darle sentido a "multiplicar por -1":

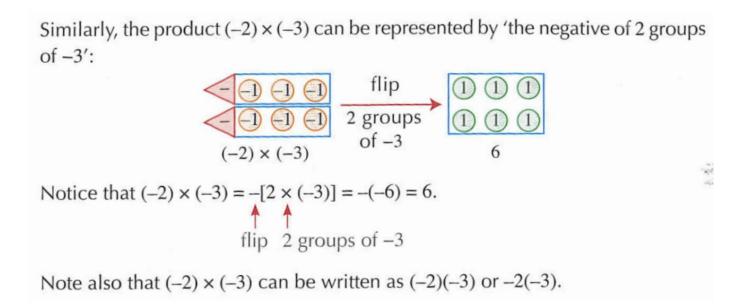
1. Un patrón:
$$(+3) \cdot (-2) =$$
 $(+2) \cdot (-2) =$
 $(+1) \cdot (-2) =$
 $0 \cdot (-2) =$
 $(-1) \cdot (-2) =$

2. Propiedad distributiva e idea de opuesto.

El producto de números enteros

* Las fichas numéricas tienen dos caras, una positiva y otra negativa. Por tanto, multiplicar por -1 es "dar la vuelta".

$$^{-2}\cdot()=^{-1}\cdot 2\cdot()$$



* Es importante observar que en este tema estamos utilizando los materiales concretos para la compresión del procedimiento, no para la comprensión conceptual.

División de enteros

* La división: creo que no es problemática, después de haber trabajado el producto.

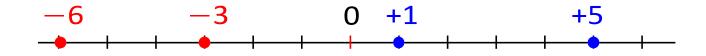
In primary school, we have learnt that
$$6 \div 2 = \frac{6}{2} = 6 \times \frac{1}{2} = 3$$
. Similarly, $(-6) \div 2 = \frac{-6}{2} = -6 \times \frac{1}{2} = -\left(6 \times \frac{1}{2}\right) = -3$,
$$6 \div (-2) = \frac{6}{-2} = 6 \times \frac{1}{-2} = 6 \times \left(-\frac{1}{2}\right) = -3$$
,
$$(-6) \div (-2) = \frac{-6}{-2} = -6 \times \frac{1}{-2} = -6 \times \left(-\frac{1}{2}\right) = 3$$
.

Ejemplo de New Syllabus

Valor absoluto y desigualdades

* ¿Es el valor absoluto un concepto necesario en este nivel?

 Creo que la recta numérica es la mejor forma de trabajar la ordenación de números enteros.



Números enteros: observaciones finales

* En este tema hay ejercicios con una componente técnica clara. Es importante reflexionar sobre el grado de complejidad de las tareas que se proponen.

INTERMEDIATE LEVEL

- 3. Find the value of each of the following.
 - (a) 4 + (-7) (-3)
 - **(b)** -3-5+(-9)
 - (c) 1-8-(-8)
 - (d) -2 + (-1) 6
 - (e) 8 (-9) + 1
 - (f) -5 + (-3) + (-2)
 - (g) 6 + (-5) (-8)
 - **(h)** 2-(-7)-8

Operaciones combinadas

 Ordenar las igualdades en columnas puede ser una buena opción para evitar los problemas en el manejo del signo =.

Worked Example

(Combined Operations on Numbers)

Without using a calculator, find the value of each of the following.

(a)
$$6-7+2\times(4-3^2)$$

(a)
$$6-7+2\times(4-3^2)$$
 (b) $(-2)^3-12\div\left[2-\left(\sqrt{25}+3\right)\right]$

Solution:

(a)
$$6-7+2\times(4-3^2)$$

= $6-7+2\times(4-9)$ (power)
= $6-7+2\times(-5)$ (brackets)
= $6-7+(-10)$ (multiplication)
= $-1+(-10)$ (subtraction)
= -11 (addition)

(b)
$$(-2)^3 - 12 \div \left[2 - (\sqrt{25} + 3)\right]$$

= $-8 - 12 \div [2 - (5 + 3)]$ (power and root)
= $-8 - 12 \div (2 - 8)$ (brackets)
= $-8 - 12 \div (-6)$
= $-8 - (-2)$ (division)
= $-8 + 2$ (brackets)
= $-8 + 2$ (addition)

Otras propuestas de ejercicios

- * ¿Preguntas o comentarios sobre números enteros?
- ¿Alguna dificultad de aprendizaje sobre la que no hemos hablado?

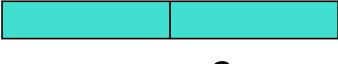
Introducción al álgebra

* Se hab 'ian vendido todos los billetes para un viaje en tren pero a última hora 12 viajeros cancelaron sus billetes y 7 viajeros compraron el viaje. ¿Cuántas personas hicieron el viaje?

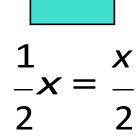
$$? - 12 + 7$$
 $x - 12 + 7$

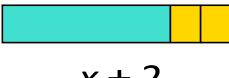
- * Dos áreas de trabajo:
 - Introducción al lenguaje algebraico modelización patrones.
 - Manipulación de expresiones algebraicas.

Introducción al lenguaje algebraico

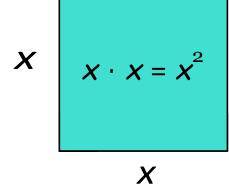


$$x + x = 2x$$





$$x + 2$$



Ejercicio

- * Alicia tiene el doble de dinero que Benito y Carla tiene 3 euros menos que Alicia. Representa los datos con un modelo de barras y expresa el dinero que tienen entre los tres:
 - si llamas y a la cantidad de dinero que tiene Benito.
 - si llamas z a la cantidad de dinero que tiene Alicia.

Ejercicio

- * En un corral hay conejos y gallinas, y sabemos que en total son 48 animales. Escribe una expresión que represente el número de patas en el corral:
 - si llamas x al número de conejos que hay en el corral.
 - si llamas x al número de gallinas que hay en el corral.

Series numéricas y patrones

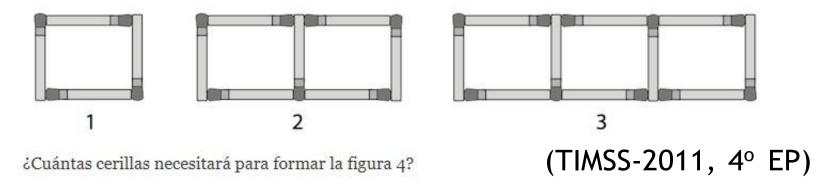
- 1. ¿Cuántas cerillas se necesitan para formar 10 cuadrados siguiendo el patrón de la imagen?
- 2. ¿Cuántas cerillas se necesitarán para formar 50 cuadrados?
- 3. ¿Y para formar *n* cuadrados?

Carlos tiene que formar con cerillas las figuras 1 a 4.

Las figuras 1, 2 y 3 se muestran a continuación.

Necesita cuatro cerillas para formar la figura 1, siete cerillas para formar la figura 2, y diez cerillas para formar la figura 3.

Carlos sigue la misma regla cada vez para formar la siguiente figura de la serie.



https://www.visualpatterns.org/

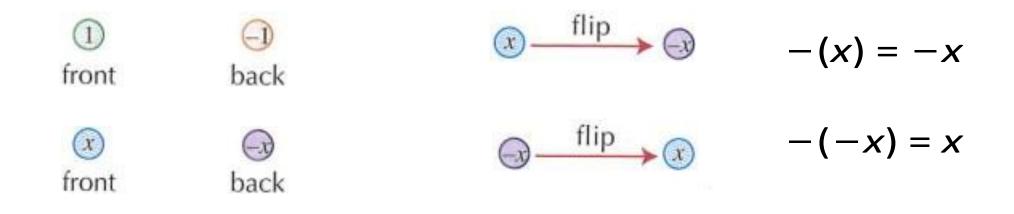
Expresiones algebraicas: valor numérico

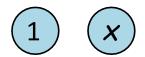
	Α	В	С	D	E	F
1					-	
2	n	2 <i>n</i>	2+n	n^2	$2n^2$	$(2n)^2$
3	1	2	3	_1	2	4
4	2					
5	3					-
6	4					
7	5					

- 2. From B3, extend the formula downwards to cell B7.
 - (i) What do you notice about the value of 2n as n changes?
 - (ii) How do you determine the value of 2n when given a value of n?
 - (iii) Hence, find the values of 2n when the values of n are 8, 9 and 10 respectively.
- 3. Extend the formulae downwards to cells C7 to F7 respectively.
- 4. Compare and examine the difference between each of the following pairs of expressions.
 - 2n and 2 + n
 - n^2 and 2n
 - 2n² and (2n)²

Una actividad muy interesante para reflexionar sobre alguno de los errores más comunes

Expresiones algebraicas y fichas numéricas





* Podemos reproducir con los términos lineales (números, x) la aritmética de enteros ya conocida.

Expresiones algebraicas y fichas numéricas

$$-(x+2) \qquad \xrightarrow{\text{flip}} \qquad \xrightarrow{\text{flip}} \qquad \xrightarrow{-x-2}$$

$$-(-x + 3y - 1)$$

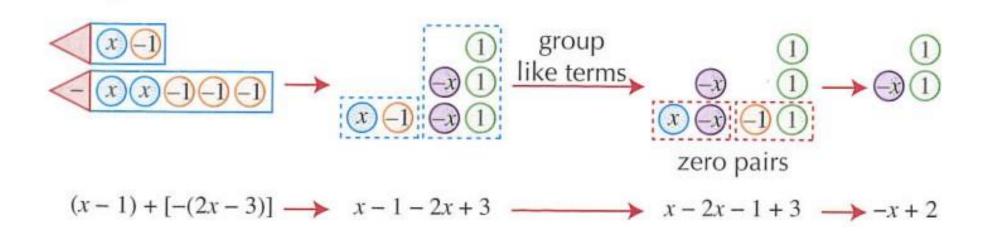
$$(-x + 3y - 1)$$

$$(-x + 3y - 1)$$

$$(x - 3y + 1)$$

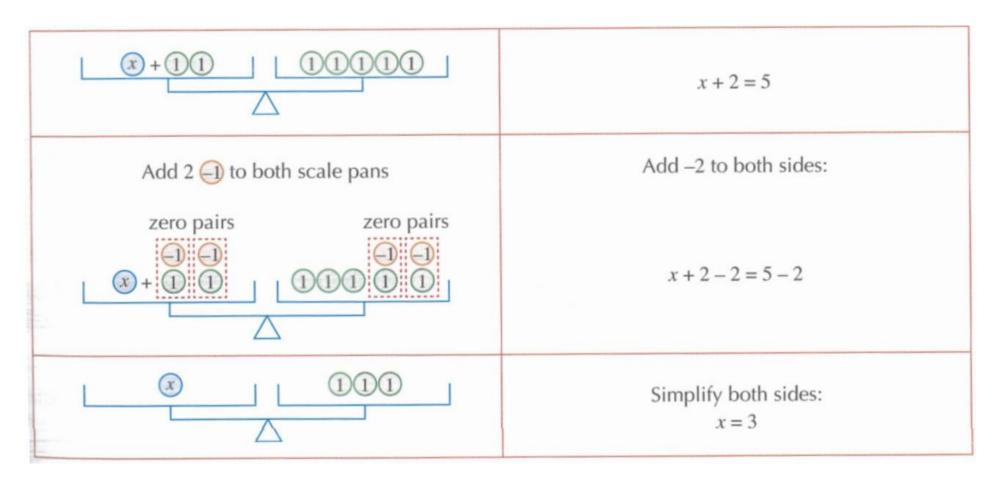
Expresiones algebraicas y fichas numéricas

$$(x-1) + [-(2x-3)]$$



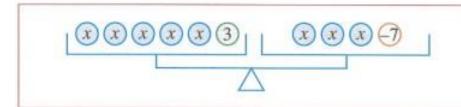
Ecuaciones lineales

El modelo de la balanza



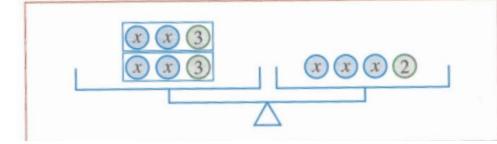
Ejemplos

Example: 5x + 3 = 3x - 7



$$5x + 3 = 3x - 7$$

Example: 2(2x + 3) = 3x + 2



$$2(2x + 3) = 3x + 2$$

* A lo largo de la unidad se prescinde de la balanza, pero se explican los pasos con detalle.

(b)
$$5x-9=3x+3$$

 $5x-3x-9=3x-3x+3$ (subtract $3x$ from both sides)
 $5x-3x-9=3$
 $2x-9=3$ (simplify the terms on the LHS)
 $2x-9+9=3+9$ (add 9 to both sides)
 $2x=3+9$
 $2x=12$ (simplify the terms on the RHS) *
$$\frac{2x}{2}=\frac{12}{2}$$
 (divide by 2 on both sides)

$$\therefore x=\frac{12}{2}$$

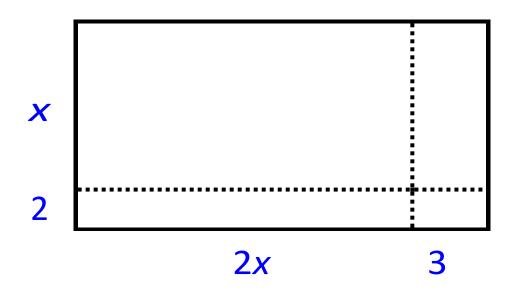
$$=6$$

Ejemplo resuelto

* ¿Hasta dónde queremos llegar en 1º en la resolución de ecuaciones?

Las "baldosas algebraicas"

$$(x + 2)(2x + 3) =$$



Factorización

https://mathsbot.com/manipulatives/tiles

¿Áreas negativas?

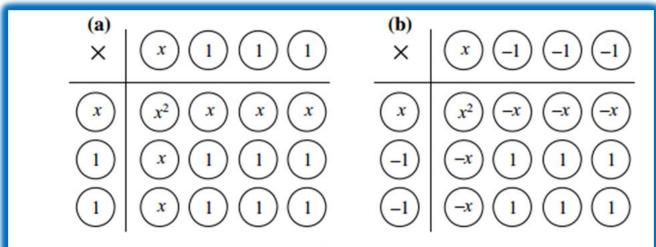


Fig. 8.11 Factorisation of $x^2 + 5x + 6$ and $x^2 - 5x + 6$ using AlgeDiscTM

(a) ×	x	+3	(b) ×	x	-3
x	<i>x</i> ²	+3x	x	<i>x</i> ²	-3 <i>x</i>
+2	+2 <i>x</i>	+6	-2	-2 <i>x</i>	+6

* ¿Preguntas? ¿Comentarios?

¡Muchas gracias por vuestra atención!