
IISSSSUUEE 0066 ­­ OOCCTT 22001122

AA MMaaggaazziinnee ffoorr RRaassppbbeerrrryy PPii UUsseerrss

hh tt tt pp :: // // ww ww ww .. tt hh ee mm aa gg pp ii .. cc oo mm

Raspberry Pi is a trademark of The Raspberry Pi Foundation.
This magazine was created using a Raspberry Pi computer.

•• CC aa mm ee rr aa PP ii
•• WW ii nn aa LL CC DD mm oo uu nn tt
•• PP oo rr tt aa bb ll ee pp oo ww ee rr ff oo rr yy oo uu rr PP ii
•• AA pp uu mm pp kk ii nn ww ii tt hh aa dd ii ff ff ee rr ee nn cc ee

TThhee
SSkkuutttteerr

HHaass
LLaannddeedd

Welcome to Issue 6,

In answer to many requests from readers, the Skutter robot series is back

with the next thrilling installment. To get robot projects or field

experiments moving, there is an article on powering from batteries. The

MagPi also presents a slightly different use for a pumpkin, as well as

interviews and programming columns.

If you have not done so already, then we suggest you try out the new

turbo Raspbian image, the speed increase is really noticeable.

Ash Stone

Chief Editor of The Magpi

Ash Stone
Chief Editor /Administrator /Header

Jason 'Jaseman' Davies
Writer /Website /Page Designs

Tim 'Meltwater' Cox
Writer /Photographer /Page Designs

Chris 'tzj' Stagg
Writer /Photographer /Page Designs

Ian McAlpine
Page Designs /Graphics

Joshua Marinacci
Page Designs /Graphics

Lix
Page Designs /Graphics

PaisleyBoy
Page Designs /Graphics

Sam Marshall
Page Designs /Graphics

Andrius Grigaliunas
Photographer

Matt '0the0judge0'
Administrator /Website

Bodge N Hackit
Writer

John Ellerington
Writer

Gordon Henderson
Writer

Colin Deady
Writer /Page Designs

Spencer Organ
Writer

Luke A. Guest
Writer

W.H.Bell
Writer

Colin Norris
Editor /Graphics (C Cave Header)

Antiloquax
Writer

2

04 SKUTTER RETURNS

Dig out the toolbox for the next thri l l ing instal lment. by Bodge N H ackitt

08 POWER FOR YOUR PI

U ntether your Raspberry Pi with a portable power suppy. by J ohn Ellerington

1 0 THIS MONTH'S STAR LETTER

U sing a FET buffer stage for the GPI O bus. by Clive Tombs

1 2 THE PUMPKIN PI

A little project to provide some H alloween fun! by Gordon H enderson

1 6 CAMERA PI

An interview with David H unt, whose Pi l ives inside his camera. by Colin Deady

1 8 OUR RASPBERRY PI SUMMER

One school teacher and his son discover programming. by Spencer Organ

20 THIS MONTH'S COMPETITION

M ore goodies on offer, brought to you by PC Supplies U K

21 BEGINNING ADA

The first instal lment in our Ada programming tutorial . by Luke A. Guest

24 THE C CAVE

Bitwise operators and system monitoring with Gnuplot. by W. H . Bel l

28 THE SCRATCH PATCH

The Bubble Sort Algorithm, sorting l ists of numbers easi ly using scratch.

27 THE PYTHON PIT

Generating H TM L pages the Python way, by J aseman

32 FEEDBACK & DISCLAIMER

Contents

3

So far we have focused on control l ing the
robot arm part of this project.

The robot arm is a very exciting piece of kit
with lots of possibi l i ties, but I would also l ike to
cover another area that could open up the field
of robotics to a lot of people, particularly if you
are working on a modest budget and can’t
quite get your hands on one of these yet.

Getting Around

Any robot needs a way to move around. In
most cases robots use motorized platforms,
but there are a few notable exceptions to this.

In the first part of this article I ’m going to
devote some space to the different types of
“mechanical platforms” that are out there.

I am also going to have a look at some ideas
for “do it yourself” and final ly I wi l l explain my
own solution to this mechanical platform issue.

Let’s begin by looking at nature. There are
insects with multiple legs, mammals with four
legs (or two) and then there are snakes which
don’t have any legs at al l ! There have been
some wonderful developments in the field of
robotics which incorporate al l of these forms of
locomotion.

There are now even swimming robots that
hang out with real fish to hunt and identify the
bad guys who pollute our oceans!

For the most part, the technology that is used
to make these kinds of robots work is
prohibitively expensive for the amateur
enthusiast, not to mention excruciatingly
complicated and almost certainly out of range

of those of you who might be considering
making a robot on a pocket money budget.

The alternative is to bui ld a motorized platform
with some sort of wheels. This instantly brings
a robot back down to earth in terms of price
and the level of difficulty. The first thing to
consider here is – what sort of platform?

There are basical ly two options. The first is a
“differential” platform which works in a similar
way to a tank. You have a motor on each side
of the robot that’s attached via some gears to
a wheel.

When the wheels are turning in the same
direction, the robot wil l move in that direction.
I f the wheels rotate in different directions then
the robot wil l turn.

The second option is to use “car” steering,
where one motor drives the robot forwards or
backwards and a second method, such as a
servo, is used to change the angle of the front
wheels and thus to steer it. Out of these two
methods, the differential platform has the
advantage in that it can perform turns in much
tighter spaces than the car steering method.

DIFFICULTY: ADVANCED Part 1

Adding a motorised base

4

Types of motors

Another consideration is the type of motor that
could be used. The simplest and cheapest
option is to use a DC motor.

This uses a single coi l (containing thousands
of turns) of wire attached to the motor shaft,
cal led a “commutator” and two opposing
magnets. Applying an electric current to the
coi l creates an electromagnetic field. The
poles of this field are attracted to the opposing
fields of the magnets and this makes the shaft
move half a turn unti l the opposing poles are
as close to each other as they can get. At this
point it switches the commutator and reverses
the polarity of the electromagnetic field. The
coi l is then repeled away from the magnetic
poles it was just attracted to, moves the rest of
the way around to the opposing fields and the
cycle begins again. More power makes it go
faster (up to a point, and then it burns out or
blows up!) . Reversing the current makes the
motor run in reverse. This is nice and simple
but the drawback is that it is next to
impossible to make the DC motor move by an
exact amount.

Another option is to use something cal led a
stepper motor. Instead of having a single coi l
and a commutator, a stepper motor has many
coi ls and a magnet. Each one must be
switched on and off in sequence in order to
move. This means the motor turns in many
tiny l i ttle ‘jerks’ . You can specify with
extraordinary accuracy how far to move a
stepper motor but the disadvantages are that
they are much more complicated to control
and have much less torque (rotational force)
than a DC motor.

Whichever motor option you decide to use, it
is unl ikely that you wil l simply be able to
connect some wheels to it and ‘hey presto’ off
you go. The motor wil l either be too fast or
have insufficient torque or “horsepower”. In
order to make it useful we wil l need to use a

system of gears or pul leys. For example, a
motor that revolves at 1 0,000 rotations per
minute wil l be rather fast, to say the least.
What's more, attaching this directly to any
robot with anything more than the tiniest
weight and it wi l l be too weak to budge it.

A more sensible (but sti l l nippy) speed might
be in the order of 2,500 RPM. In order to
achieve this we would need to use gears (or
“cogwheels”) with a ratio of 1 to 4. In that way
the speed is reduced by a factor of 4 and the
torque is increased by the same amount. That
means that the gear attached to the motor
needs to be four times bigger than the one
attached to the wheel. You can achieve the
same result by using a combination of smaller
gears. Nevertheless this adds another level of
complexity to our project.

I t is possible to buy electric motors with
prefabricated gear assemblies that are
specifical ly made for the robot and hobby
market. These have the advantage that a
wheel can be directly connected to the axle on
the motor, without having to worry about
making your own gear assembly. The
disadvantage is that they are comparatively
expensive, often in the order of £1 0 or more
for a single unit.

Acquiring a motor

You might be reading this and be starting to
feel a l i ttle bit daunted at the complexity and
cost of embarking on a project l ike this, but
don’t worry. I 'm going to tel l you about another
method you can use to make a motorised
robot platform. You can cheat!

There are countless reasonably priced
motorised toys on the market which, with just
a l i ttle bit of hacking and bodging that, you can
make into a robot platform that can compete
with some of the best. Even better is that you
don’t even have to pay ful l price for something
l ike this.

In almost every country in the world there are
“car boot sales” or “yard sales” or such l ike
where, with just a l i ttle luck and some good
hunting, you have a good chance of being able
to find a suitable toy which can be converted
into a platform – it is l ikely that such a toy wil l

5

use DC motors and you have a greater chance
of finding a toy that uses car steering instead
of a differential but these sales hold some real
gems for the resourceful amateur robot
bui lder.

I have used this cheating method for my own
skutter robot. I obtained a Big Trak toy, which
you can buy new for about £20 (it's not
unl ikely that you might find one of these in a
car boot sale too, if you are lucky) .

To help show you how you can adapt toys into
robotic bases I 'm going to describe to you how
I adapted this Big Trak for my Skutter.

Adding a Big Trak platform

1 . Removing the bumper
First disassemble the Big Trak. Most of the
screws are easy to access. However one is
hidden behind a grey plastic bumper on the
rear.

To get to this screw, first unscrew all others to
al low Big Trak to be prized open just enough
to al low the bumper to be uncl ipped from
inside.

2. Removing the keypad
After removing the l id, uncl ip al l accessories
such as the plastic turret etc. Some wil l be stiff
but eventual ly came off with a bit of patient
wiggl ing.

The keypad and ribbon cable to the
electronics beneath prevents the l id being
removed. This keypad is glued in place and
can be peeled off easi ly to al low complete
removal of l id.

3. Disconnect the motors
Once the l id is removed, unscrew the circuit
board below. This reveals a plastic gear box
which also houses the two DC motors that
power the big trak.

Snip off the wires that are attached to the
motors. Solder two double core “bel l wire”
type cables to each + and – terminal on the
two motors.

4. Test the motors
Now test that the motors work. A standard D
cell 1 .5v torch battery wil l suffice to see the
base trundle forward, reverse and turn
depending on how the two wires are held to
the battery terminals. In a nutshel l that’s it! A
fantastic motorized platform for a robot.

To control the motors some reasonably simple
electronics are required so that the GPIO on a
Raspberry Pi can instruct them to move. (A
stern word of warning – do not under any
circumstances electrical ly connect a motor
directly to any part of a Raspberry Pi, doing so
wil l certainly cause it to try to handle too much
power and wil l , putting it bluntly, ki l l i t. I wi l l
deal with the electronics to safely interface the
motors with the GPIO header in another
article)

5. Mounting the robot arm
Further adaptions to the Big Trak are required
to mount the robot arm inside. The hole for the
“turret” on the Big Trak is almost in the perfect
location and size to al low the base of the arm
to sit inside with the “shoulder” protruding
through.

6

For complete perfection, score around the
edge of the hole with a stanley knife or simi lar
and then use a pair of wire snippers to cut out
and break off sections of the l ip around the
turret hole.

Use a fi le to smooth the rough edges or
sandpaper, or even the side of a box of
matches.

A l ittle more work on the Big Trak body is
needed to enable the base of the arm to fit
inside.

Use the wire snippers to cut away the plastic
loudspeaker mounting on the bottom of the
Big Trak.

6. Fitting the arm
Final ly, a modification to the robot arm base is
required, remove the stabi l izers from the base
of the arm with a hacksaw. (I don’t think the
arm real ly needs these anyway).

The robot arm base should now be quite a
good fit inside the Big Trak.

Some extra work is sti l l needed to make sure
the arm wil l be stable. At the moment for
bui lding and testing I am just using tape and
rubber bands but in due course I wi l l use
something stronger to secure it.

I may go with duck tape for this. Gaffer tape is
a favourite “bodging tool” of mine because it is
strong but al lows you to easi ly remove it if
needed, however there are numerous other
methods that you could use with a bit of lateral
thinking.

The final product as you can see is a finished
skutter body.

Next Time...

The next stages are to get involved with the
electronics and programming for making the
motorised platform move under the control of
the Raspberry Pi.

Article ByBodge NHackitt

7

There are plenty of interesting projects that
require your Pi to be untethered from its mains
power supply, or require a separate 5V supply
that is capable of providing more power than
is avai lable from the Pi’s GPIO pins – here’s
one way to do this.

The main requirement is to provide suitable
regulation at 5V, with sufficient current
capacity for your project. Although I initial ly
looked at the cheap and popular 7805
regulator, I rejected it because it’s not very
efficient – a major consideration for a battery-
powered supply – and it’s only capable of
handl ing 1 Amp – as the Pi uses up to 700mA,
that doesn’t leave much spare for driving
anything else.

I eventual ly settled for the LM2576T-5.0
switching step-down voltage regulator – this
device is much more efficient than the 7805,
and is capable of handl ing up to 3 Amps. I t wi l l
take any input voltage from 7 – 40V DC, giving
you a wide choice of battery pack - I ’m using 8
x 1 .2v NiMH batteries, which give a 9.6V
supply voltage, but you could use a 1 2v lead-
acid battery if that was more suitable for you.
Apart from the regulator chip itself, only 4
other components are needed – 2 capacitors,
a choke and a Shottky diode.

Here are the RS part numbers:

1 x LM2576T­5.0 460­477
1 x 100uF 25v electrolytic capacitor 684­1942
1 x 1000uf 25v electrolytic capacitor 684­1951
1 x 100uH choke (Min 3A Rating) 228­416
1 x Shottky Diode 40V 3A 714­6819
1 x Stripboard 206­5879
1 x Roll of Insulation Tape 513­553
1 x Heatsink (optional, see note opposite) 189­9306

The data sheet for the regulator is here:

http://www.ti .com/l it/ds/symlink/lm2576.pdf

where you wil l also find the circuit detai ls as
shown in diagram, opposite.

And the connections on the regulator chip are:

The circuit is easi ly bui lt on a piece of
stripboard and no track cuts are required; an
indicator LED can be added – use a 200 ohm
series resistor - and I would recommend
3.25A fuses in series with the positive input
and output.Take care to get the 2 capacitors
and the diode the right way round.

This is what mine looks l ike:

PORTABLE POWER
FOR YOUR PI
Untether yourRaspberryPiwith a portable power supply.

8

And from the underneath:

The stripboard layout:

Care should be taken to ensure that there are
no short-circuits caused by solder bridging
adjacent strips of the stripboard. After you
have bui lt and tested the supply, if you are
going to connect it directly to the Pi, i t should
be connected via the 2 points marked TP1
and TP2, with the positive feed going to TP1 .

The method I have shown does not uti l ize the
micro-usb socket, this is a personal
preference and to reduce costs. Alternatively,
a cut-up micro-usb connector can be used, the
common wire colours are as fol lows.

Red=5V
Black=Gnd
White=Data + (not used)
Green=Data - (not used)

Remember, the stripboard base is l ive, so
keep it on an insulated surface, possibly use
insulating tape (RS part number 51 3-553) or
mount into plastic housing. I f using housing,
the unit wi l l become warm so venti lation holes
would be required to al low for cool ing of the
device. Remember don’t try to connect a
mains supply at the same time!

Depending on how much load you put on it,
the regulator chip may get warm – if it’s getting
hot, a heatsink should be added, as I have
done – there are plenty to choose from, just
search on TO-220 heatsink (RS part number
1 89-9306).

Note that the metal tab on the regulator is
connected to ground / pin 3, so either isolate
the heat-sink (most are supplied with a
suitable insulating kit) or keep it away from
any contact with the other parts of the circuit.

Also note this regulator doesn't mean that you
can take more power from the Pi's GPIO pins,
any project load should be connected directly
to the regulator output.

Article byJohn Ellerington

diagram 1:

9

Introduction

Following on from the issue 4 article on
transistors, I would l ike to describe my use of
the 2N7000 Enhancement FET. I used this
device only because I had some on hand from
previous projects. Other types could be better
suited as I wil l explain later.

Their use provides some interesting
behaviours to buffer circuits which may prove
beneficial in some applications.

The data sheet can be found here:
http://pdf1 .al ldatasheet.com/datasheet-
pdf/view/2842/MOTOROLA/2N7000.html

Now, the FET's Gate is, in simplistic terms,
insulated from the Source and Drain
connections. Only the voltage relative to the
Source (Vgs) is important. Once again I state
in simplistic terms. Even if the GPIO pin is
configured as an INPUT with the Pi's own Pull
Up or Down resistors active, the FET wil l
change state due to the extremely high input
impedance of the FET.

From the data-sheet it can been seen that at
around Vgs of 2.5v at room temperature the
device starts to conduct. By 3.3v it can
certainly operate an LED or small relay. As I
stated above other FETs may be more
suitable in their Vgs characteristics.

Now consider the fol lowing application: Test
al l inputs at start-up. Very simple code can be
written to test al l used inputs at start-up. By
pul l ing the inputs up then down and testing for
the condition in software and visual ly for an
LED flash one can verify both the wiring and
the buffer FET. This may seem trivial , but if
the LED were replaced with the start circuit for
some equipment which must be started in a

correct sequence, this code would el iminate
the FET as a source of error. As a
maintenance engineer I l ike diagnostics to
make my life easier!

I t also has the advantage that one GPIO can
be used for both input and output with, in Fig
1 's case, a visual indication of button press
too.

This is my first ever stab at a Python script. I t
is bound to be very inelegant, but it just about
does what we need. I t has been tested in
Python 3 only. Try running it with a finger on
the button to simulate an input being stuck.

Of course one could arrange the switch to pul l
the input up. That way the LED would not be
on all the time. Script adjustments wil l be
necessary.

With a change in resistor values the FET

Star Letter: An FET Buffer
Stage for GPIO Access

In response to the In Control article from Issue 4, Clive Tombs

shares his own example of connecting to GPIO pins.

Figure 1: FET Buffer

10

status can remain unchanged if the button is
pressed when the GPIO is set as output.

Eg: if R1 is 330Ω and the switch is connected

through about 4k7Ω the Vgs wil l sti l l be in excess

of 3.0v with the button pressed if GPIO pin is

output set high.

2N7000s are avai lable for 1 0p each. Other,

superb devices are now available. Some like the

2SK4043LS can switch pulses of 80A with as l ittle

as 2.5v Vgs. A single transistor could never do that

as driven by the PI . And the 2SK301 8, a surface

mount device designed for small Vgs conditions

l ike here in the PI .

#input test with visual indicationimport RPi.GPIO as GPIOimport time
change to BCM GPIO numberingGPIO.setmode(GPIO.BCM)
(pull_up_down be PUD_OFF, PUD_UP or# PUD_DOWN, default PUD_OFF)GPIO.setup(4, GPIO.IN,pull_up_down=GPIO.PUD_UP)
test for pin able to go highif GPIO.input(4):print ('Input True Good')time.sleep(0.2)GPIO.setup(4, GPIO.IN,pull_up_down=GPIO.PUD_DOWN)else:print ('Fault Input - pin4')time.sleep(1)quit()
test for input able to go lowif GPIO.input(4):print ('Faulty Input - pin4')time.sleep(1)quit()else:print ('Input False Good')time.sleep(1)
if it gets to here, inputs' states# are both achievableprint ('Inputs tested Good')
commence the button demoprint ('Press the Button')
while True:# set pin high and# wait for button pressGPIO.setup(4, GPIO.IN,pull_up_down=GPIO.PUD_UP)

button pressedif not GPIO.input(4):

print ('button pressed')time.sleep(1)
button releasedif GPIO.input(4):print ('button released')flash = 20GPIO.setup(4, GPIO.OUT)

flash untilwhile flash > 0:GPIO.output(4, True)time.sleep(0.1)GPIO.output(4, False)time.sleep(0.1)flash -= 1
print ('press button')

There is a lot to be said for the FET in this
application.

Clive Tombs

Editors Note

We love hearing from our readers. I f you have
a comment on an article or a cool Raspberry
Pi related tip to share, please send it to us and
we'l l try to get it in an upcoming issue.

DID YOU

KNOW?
The "In Control" series in issues 2, 3 and 4 is

a great place to start and learn how to use

the GPIO. I f you have not started yet but

want to have a go, there have been some

updates to the RasPi GPIO Python l ibrary

that you need to know before starting.

1) The RasPi GPIO library can now be easi ly

instal led with:

$sudo apt-get install python-rpi. gpio

or

$sudo apt-get install python3-rpi. gpio

2) Add the fol lowing l ine to each program:

import RPi. GPIO as GPIO

GPIO. setmode(GPIO. BOARD)

11

A little project to provide some Halloween fun. Wire up a

pumpkin with glowing eyes and a motion dector!

The plan is to fit a Halloween pumpkin with a
pair of RGB eyes and a nose made from a PIR
motion detection sensor. Software wil l detect
movement in the room (or street!) and fl icker
the eyes. Optional ly we can hook up a set of
amplified speakers to play some spooky
music/effects!

The project can be soldered together relatively
easi ly, or made on a breadboard if you have a
selection of jumpers wires, and some
insulating tape, heat-shrink, or if you're real ly
stuck, something l ike BluTak!

Halloween is an old festival or celebration
which has been adopted by many cultures and
rel igions over the world. I ts roots may originate
in acknowledging that autumn is ending and
we should take stock for winter, or to
remember the passing of souls, or a time to
hide from ghouls or the souls of enemies
(hence the masks and lanterns!) For us, it' l l be
a bit of fun, some hot soup and a fancy
Raspberry Pi powered lantern!

Ingredients

Like al l good pies we need some ingredients:

One Halloween Pumpkin

A big orange pumpkin is best. In Scotland

(Where I 'm from), you should traditional ly use
a large yel low neep and make a "tumshie
heed". Some English counties may
traditional ly use a mangelwurzel and if you can
get one of suitable size that may be
appropriate.

While a fun idea, it's probably not real ly
practical to fit the Raspberry Pi inside the
Pumpkin - they are somewhat damp inside,
however if i t's big enough and you're careful
you'l l be fine. You can line the base of the
Pumpkin with something l ike bubble wrap, or if
you have your Pi inside a case like the Adafruit
one with the top removed, or any other case
that al lows access to the GPIO connector.
Just remember to not get the Pi wet!

Electronics

2 x RGB LEDs - I 'm using the 276-028 LEDs
from Tandy. Any common cathode RGB LEDs
wil l work.

http://www.tandyonline.co.uk/5mm­full­

color­rgb­led­common­cathode.html

1 x PIR Sensor - I 'm using the 276-1 35
sensor from Tandy.

http://www.tandyonline.co.uk/pir­motion­

sensor­module.html

Note the connector on the PIR sensor - if
you're not handy with a soldering iron, then
you can use standard breadboard male to
male connectors. Black is 0v, red is +5v and
brown is our output wire.

PIR means Passive Infra-Red. PIR sensors
work by sensing the infra red (heat) in the field
of view and "remembering" the pattern. I f i t
changes significantly, then the sensor trips.

12

They do take a few seconds to initial ise, but
this is described in the software. They are
used in appliances such as burglar alarms
and automatic outdoor l ights.

Resistors - 4 x 1 00 Ohm and 2 x 1 50 Ohm. If
you don't have any, I 'd suggest buying one of
the "starter-packs" of resistors - e.g. a "book"
with various values. You'l l probably only ever
use 1 0% of them, but it's an easy way to start.

Colour codes for 3-bar resistors:

1 00 Ohm: Brown, Black, Brown
1 50 Ohm: Brown, Green, Brown

These are relatively safe values, but the LED
may be a little dim, so they can be reduced to
82 Ohm and 1 00 Ohms respectively.

Construction

Fairly straight forward. The first thing to do is
identify the colours on the LED - Each RGB
LED has 4 Legs, with one being longer than
the other 3. The longer one is the common
cathode, and this is connected to 0v. You can
then connect each in-turn to +3.3v via the 1 50
ohm resistor to identify the colours, however
you should end up with:

Red, Cathode (Long Pin), Blue, Green

If you're handy with a soldering iron, what I 'd
suggest is soldering the resistors directly onto
the LEDs, then taking some hook-up wire
back to the Pi. I f you use a female to female
jumper wire, then you can plug it directly into
the Pi, however you may want to use a small
breadboard as you have 3 devices to connect
to the 0v l ine; although you could simply solder
them all together.

I l ike to use heat-shrink tubing to keep
everything separate - it also adds a little
mechanical strength the the joints too, but
electrical insulating tape wil l do if you're
careful .

We're connecting this to one of the I2C pins on
the Pi. Note that although this device is
operating at 5v, the output pin is "open
col lector". This means that there is normally
no voltage present on the pin but when the
sensor trips, it acts l ike a switch, connecting

the pin to the 0v l ine. You can simulate the
sensor with a simple switch connecting the pin
on the Pi to the 0v l ine. The I2C connectors on
the Pi already have on-board 1 800 ohm pull-
up resistors, making them ideal for this
purpose.

See the attached breadboard diagram. Even if
not using a breadboard and soldering
everything, this is sti l l a good reference to let
you see where everything goes.

Carving

Carving your pumpkin.. . Please be as
adventurous as you l ike, but remember - we'l l
be putting the LEDs in the eyes and the PIR
sensor on it's nose.

Here is a suggestion: With a sharp kitchen
knife, cut a ring round the top, but angle the
cut towards the centre of the pumpkin. That
way, you can remove the l id, hol low it out and
put the l id back on and it (hopeful ly!) won't fal l
into the excavated pumpkin. You may wish to
use zig-zag cuts too - which you can
subsequently highl ight with a black maker pen
to emphasise that sawn-off head look...

Once you have the top off you can scoop out
the seeds. Dry these in a low oven for a few
hours then feed them to your budgie, hamster,
etc.

Scoop out the flesh and put in a large oven-
proof dish. Sprinkle with a l ittle ol ive oi l , add a
little salt and pepper and roast in a hot oven

13

(200C / gas mark 7) for about half an hour
unti l just starting to take some colour. Remove
from the oven, put in a pan, mash, add in a
small pot of single cream and half a vegetable
stock cube, bl itz or mash, bring to the boi l and
immediately remove from the heat and serve
in a mug with a large piece of crusty bread...

Note: I f you're a l ittle bit unsure about sharp
knives and hot cookers please do get
someone to help you!

Testing

Once assembled, we need to test and for this
we need our Raspberry Pi with the LEDs and
PIR sensor attached.

Get wiringPi code:

At the command-prompt type the fol lowing:

cd ~

git clone git://git.drogon.net/wiringPi

I f this command fai ls, i t means that git is not
instal led. Instal l git with:

sudo apt­get install git­core

and re-run the git command above.Next:

cd wiringPi

./build

This wil l bui ld and instal l wiringPi for you. I t
may take a minute or two.

The GPIO command.

The gpio command is a uti l i ty that's part of
wiringPi which al lows you to manipulate the
GPIO pins from the command line.

Try this:

gpio mode 0 out

That tel ls the Pi to make pin 0 an output, then:

gpio write 0 1

This writes 1 (ie. on) to pin 0.

I f you've wired it al l up correctly, the first LED
should now be lit

up Red.

Now for more testing run these commands
using the default BASH shell :

for i in 0 1 2 4 5 6; do gpio mode $i

out; done

gpio write 0 1

gpio write 6 1

You should now have a red LED and a green
LED. I f not, then go back and check your
connections. I f you get the wrong colours, then
just swap the connections, or work out the
right pins to use and adjust your program as
required (it's sometimes easier to change
software than hardware!)

Test the LEDs

Firstly a few handy commands:

This wil l turn off the first LED:

for i in 0 1 2; do gpio write $i 0; done

and this wil l turn off the 2nd LED:

for i in 4 5 6; do gpio write $i 0; done

Remember you can use the up-arrow keys at
the command-l ine to repeat previous
commands.

Then red:

gpio write 0 1

gpio write 4 1

blue:

gpio write 1 1

gpio write 5 1

green:

gpio write 2 1

gpio write 6 1

Remember to run the 'for' sequence above
each time to turn them off.

Play with the gpio commands above to see
what colour combinations you can create. You
ought to be able to get 8 basic colours (Black,
Red, Green, Blue, White, Cyan, Yellow and

14

Magenta). In software, we wil l use PWM to
give us the possibi l i ty of generating 1 mil l ion
different colours!

Testing the sensor

Run this command:

gpio mode 8 in

The I2c pin we're using is pin number 8, so we
set it to an input. This pin is one of the I2C
pins on the Pi and has an on-board 1 800 ohm
resistor pul l ing the pin to +3.3 volts, so with
nothing connected to the pin, it's going to read
a logic 1 , or high.

gpio read 8

and it should return 1 .

However it may return 0 - and that's because
the sensor has tripped.. So point the sensor
away from you and wait for it to read 0. You
can run a loop as fol lows:

while true; do gpio read 8; done

and then move in front of the sensor when it
should read 0.

Software

Once we have that working, we need to write
some software (or download it from the 'net!) .
You can clone the code with git or download
the fi les from here;

http://git.drogon.net/?p=halloweenPi

The software here is designed to control the
two RGB LEDs triggered by the PIR. There
are 3 fi les of code and a makefi le. The
makefi le is a set of rules which gives
instructions about bui lding the code.

To compile and run, type:

make

sudo ./halloween

I f you do not have wiringPi instal led, then you
wil l get fai lures, so instal l wiringPi:

pushd /tmp

git clone git://git.drogon.net/wiringPi

cd wiringPi

./build

popd

If you get an error when running the git

command, then:

sudo apt­get install git­core

The three program fi les -

halloween. c : This is the main program - it
initial ises the sensor and LEDs and performs
actions when the sensor is triggered.

ledControl. c : This sets up the RGB LEDs
and provides a function to program any RGB
value to either LED.

ledPatterns. c : This is code to create
many different patterns on the LEDs.

Now when you run sudo ./hal loween you wil l
have a fun Pi powered pumpkin.

I f you want to customize the patterns,
ledPatterns. c , is probably the fi le you
want to play with. You can change one of the
existing functions, or add new functions into it.

To add in a new pattern write a new function.
Try to use the same style as the existing ones
and have it run for a set period of time. Then
add an entry into ledPatterns. h and call
the function from the main halloween. c

program.

You can watch a short video of the pumpkin
at:
www.youtube.com/watch?v=jg8ugFCdJ7I

Gordon Henderson

Editors note; Dear reader, you may have
noticed the text refers to carving a real
pumpkin but the photo shows a plastic one.
Sadly Gordon was unable to find a real
pumpkin in stores by the time this issue went
to press. Your editor was duly shocked, for in
the US pumpkins have been available for
weeks and Christmas lights have been sold
since June.

15

Q: When you saw the Raspberry Pi did you
immediately think that it was ideal, or did you
order one for other projects and then consider
the camera grip?

Embedding a Raspberry Pi inside a camera
grip was a bit of a Eureka moment. I had
looked at the Beagleboard and similar over
the last couple of years but the price point was
too high each time. The Pi is a perfect
combination of price to power ratio, size and
features. I saw an announcement on Engadget
and decided to get one.

Now, with Camera Pi, I can automatical ly
download photos wirelessly from the camera
and preview on an iPad, and remotely issue
commands over SSH using gphoto2 to take
photos.

Q: How did you discover that the DC-DC
circuitry inside an iPhone charger was what
you needed to connect the battery?

Someone on the
Raspberry Pi
Forums mentioned
this, and by chance I
had a broken iPhone
charger in the
recycl ing box.
Original ly I
connected 5V from
AA batteries to the
DC-DC converter but

only got 4V out. I then had the idea to use a
7.2V Canon camera battery and got 5.08V,
perfect for powering the Pi. I then connected it
to the Pi, and it booted up fine. Both Ethernet
and USB were working. I got very excited at
this!

I cut the original battery enclosure from the
grip in half and used that to mount the battery.
This was then located in a cut-out in the grip
to the right of the Pi, although it does push on
the GPIO a bit. I covered the pins with shrink
wrap to ensure they did not touch.

Q: How do you compare your solution to the
Eye-Fi SD card (www.eye.fi)?

I have an Eye-Fi card but as my Canon 5D
uses Compact Flash an adaptor is needed. I
only had l imited success with it. I ’m not
blaming Eye-Fi as they do state this on their
website, but it did mean I had to look for an
alternative wireless solution to transfer photos.
The Pi also gives me a lot of additional
functional ity by enabling direct control of the
camera.

Q: Did you follow a plan for this project from
the outset or use a more organic approach
adding functionality as you went?

I t is definitely an organic project, although I do
have a firm idea of what I want to achieve.
When I saw the Pi I thought it has lots of
possibi l i ties with the hardware ports on board.
I had watched "The Mountain" by TSO
Photography
(www.tsophotography.tumblr.com) and it was
inspiring stuff: his camera was connected to a
stepper motor and could slowly pan as it took
images. This kind of control is a ki l ler feature
and it is one of several possible directions
Camera Pi may go in as the GPIO possibi l i ties
are endless.

Q: In your blog you detail having issues with
gphoto2. Howdid you resolve this problem?

When I first connected the camera via USB
gphoto2 would lock up after each image giving
an error. I parked the project for a month

Camera Pi
An interview with David Hunt
Take a look at the photo to the left and you will see a perfectly

normal camera that has been given some extra functionality by

the inclusion ofa RaspberryPi in the grip. This is Camera Pi.

16

because of this. When the next Raspian
Release Candidate was released I tried again.
In the end I found some C code on the net to
reset USB after taking each image, which I
wrapped in a shel l script. With this in place
and after a few hours in Perl I had a working
proof of concept.

Q:What other problems did you encounter?

The proof of concept (not held in the camera
grip) was fairly straightforward and worked
well . To be honest I was amazed that the
software packages I need were already
avai lable in the repository and easi ly instal led
via apt-get, for example: I found a package for
writable NTFS support straight away when I
went looking.

Modifying the grip was a challenge and the
hardest part of the bui ld, taking in the region of
40 hours to careful ly cut and fit the
components as the grip is made of tough
plastic that is difficult to cut.

Q: What do you think of the potential to
extend the system via GPIO?

The mind boggles at the possibi l i ties of talking
to other equipment over GPIO. For example
using the Pi to drive a motorised telescope
mount is something I would l ike to see
someone do. To-date I have hooked up some
transistors and resistors to the GPIO pins and
can wake the camera if i t enters sleep mode
by emulating a half-press of the shutter
release, plus I have connected a broken
shutter release cable to GPIO to take photos
manually.

Q: What has been the response to Camera
Pi?

I have had a lot of incredibly positive feedback
through my blog from both amateur and
professional photographers: one asked where
they can buy a Camera Pi setup. Other
enthusiasts are bui lding them and there
seems to be a lot of interest. Most people
seem to be aware that they can tether their
camera to their laptop but had not thought
about bui lding their own computer-in-grip
solution using gphoto2.

Q: What has been the reaction to the
RaspberryPi amongst your peers?

In the office the Pi has people real ly excited
and we are using it as part of our mentoring
program enabling seniors to train up others
and encourage creativity. The company is

actively encouraging this which is excel lent.
One guy got up at 4am on the day of the
release to get his order in!

Q: Do you think the Pi is an enabling device
that brings an affordable development
platform into commercial reach of almost
anyone?

I am used to working with l imited device
resources of just 64-1 28MB RAM and once
created an 8MB Linux instal l on Compact
Flash with only a 700KB kernel. With the
relatively decent CPU and RAM in the Pi, and
configured with minimal RAM dedicated to the
GPU (I never start the X GUI) it is perfect for
my needs. I am amazed at what the
Foundation has managed to achieve with the
Pi’s hardware for the cost and the low price
definitely helps in this regard.

Q: Any final thoughts?

The Raspberry Pi has an emotional factor as it
brings back a lot of 80s nostalgia as well as
being an excel lent, usable machine. I t
encourages use as a programming tool l ike
the BBC Micro where one would type in
games by hand from computer magazine
l istings. Eben is dead right that there has been
a gap of 1 5+ years in teaching proper
computer science in schools, focussing
instead on word processing and
spreadsheets. Unfortunately, many kids often
don't know the fundamentals of programming
when they reach university or industry. The
Raspberry Pi gives them this opportunity.

David Hunt has worked on embedded
systems for about 20 years, programming in C
on a variety of devices. Today he works in
Ireland for an embedded software company.
He is a keen amateur photographer and has
won a number of international awards.

All article images

copyright DavidHunt,

www.davidhunt.ie

17

Our Raspberry
Pi Summer
When I first told my wife that I

had bought a Raspberry Pi and it

was going to be deliveredin 1 0

weeks she thought I had gone

mad.

After some explanation that this

was in fact another computer for

home I was met with even more

disbel ief and comments about

where would another computer

go - we haven’t got room.

After exactly 8 weeks the Pi

arrived and my seven year old

son and I were both real ly

excited by the credit card sized

circuit we unboxed.

As a teacher and a bit of a geek I

was excited at the prospect of

giving my son a chance to write

some simple games and a

project to work on over the

summer hol idays. Being a chi ld

of the 80s I spent many a happy

hour writing simple and

eventual ly more

complicatedgames in BASIC on

my Acorn Electron and

wondered if Phi l ip would catch

the programming bug.

Fol lowing the initial excitement of

booting a LINUX machine

(thanks again for the many

happy memories from Uni) we

started up SCRATCH and began

to explore. With very few

instructions we were in at the

deep end.

Within an hour Phi l ip had

discovered how to add a piece of

graphics (a Sprite) and make it

say simple messages. Next

came motion and control of the

Sprite.

After a few more hours

programming and experimenting

with different ideas Phi l ip’s first

gamewas written.

We decided to make a short

video of the game and of using

A School Teacher
and his son discover

coding like it's the
80s again!

18

Plugged in and
ready to go!

Boxing our

Raspberry Pi

Phi l ip in action

the Pi and uploaded it to

YouTube. We could’t bel ieve the

response - within a few days we

had passed 20,000

views and with loads of positive

comments flowing in Phi l ip was

encouraged to write his second

and third games.

Over the next few weeks two

more games were written. Phi l ip

developed quickly his

understanding of the different

commands and operations in

Scratch mostly through a

process of trial and error. There

were a number of times he asked

me for help and then

decided that his code was better

and I was making it more

complicated.

People have asked me many

times what is the point of a Pi?

As a teacher I can see amazing

potential in this cheap little

device that can be simply

plugged into a TV and used by

anyone. I don’t think that my son

wil l become a computer

programmer or a game designer

- but this amazing summer with

the Pi has shown us both what

can be achieved with

determination and perseverance.

As someone who has recently

taught GCSE ICT and had

students designing Business

Cards or one of the other (banal)

activities which make up the

GCSE course I thoroughly

bel ieve in the cal l to change

teaching ICT back to basics

such as programming. The ski l ls

that my son has been developing

this summer through

programming wil l be invaluable

as he moves into Junior school

and then beyond. We live in a

culture of instant gratification and

success and programming has

never been l ike this. Things often

don’t work and to succeed we

need perseverance and a

wil l ingness to look at the problem

from a different

angle. As a parent and a teacher

seeing these ski l ls developing is

The Game

real ly exciting, a huge change

from the “I can’t do it so I give

up”.

Here’s to another slice of

Pi.

To start the game: The ball:

The frog:

The starfish:

SpencerOrgan is a seasoned
SecondarySchool teacher from
the WestMidlands. In his spare
time, he runs a tech website

(home.uktechreviews.com). He
is passionate about bringing
creativity into teaching and

learning and about uisng ICT
andmultimedia as facilitators for

this.

19

To see the large range of PCSL brand Raspberry Pi accessories visit

http://www.pcslshop.com

Last Month's Winners!
Winner of the PCSL accessories bundle is Paul Hargrove (High Wycombe, UK)

Winners of the PCSL engraved case are Guido Malfatto (Turin, Italy) and Jason

Ellmers (Plymouth, UK)

Congratulations. We wil l be email ing you soon with detai ls of how to claim all of those

fantastic goodies!

This month there wil l be FIVE prizes!

Each winner wil l receive a Limited Edition

LCD mount by PCSL.

For a chance to take part in this month's

competition visit:

http://www.pcslshop.com/info/magpi

Closing date is 20th October 201 2.

Winner wil l be notified in next month's

magazine and by email . Good luck!

Once again The MagPi and PC Supplies Limited are proud to announce yet
another chance to win some fantastic R-Pi goodies!

OCTOBER COMPETITION

20

21

BIG WORLD
Ada, a language for everyone

Baby steps in a.. .

By Luke A. Guest

Introduction

I n this article I wi l l introduce the Ada

programming language, i ts history, what i t can

be used for and also, how you can use i t wi th

your Raspberry Pi computer. This article has a

number of coloured side-boxes which provide

extra information as I introduce Ada, you should

read these so you gain a deeper understanding

of the language. So let's get started. . .

You probably know what other programming

languages look l ike, most of these are not very

readable and seem to be a jumble of words

(sometimes, not even words) and weird symbols.

Al l languages provide various symbols, but Ada

was designed so that i ts programs were easier

to read by other people, even many years after

they were orig inal ly wri tten.

Unl ike Python or Ruby, Ada is a compi led

language, much l ike C. This means we have to

pass Ada programs (source) through something

cal led a compi ler which converts this source into

machine language so that i t can be run directly

on the computer.

In this article, I wi l l be using a Debian based

system image, so Debian Squeeze or Raspbian

wi l l be fine. Debian provides an Ada compi ler, i f

you are using a di fferent Linux distribution such

as Fedora, you wi l l have to check their package

managers for the compi ler. The compi ler is

cal led GNAT so you know what to look for.

Before we get started, I wi l l assume you are

running a graphical environment, such as LXDE

(after typing startx or booting directly into i t, see

MagPI issue 3 page 3 for more info) , even

though in this article we wi l l be using the console

only to start.

I have tested the examples in this text by logging

into a remote shel l on my Raspberry Pi .

Getting started

Before we can start typing in Ada code and

running i t on the computer, we need to instal l a

few tools. We wi l l need the terminal , a compi ler

and an edi tor, start LXTerminal and type in the

fol lowing commands to instal l the tools we need:

$ sudo apt-get install gnat

You wi l l be asked for your password, enter this,

when APT asks you i f you want to continue

press the return key at this point to let APT

instal l i ts packages.

Then create a directory for this article's source,

we wi l l need to change to this di rectory as we

wi l l be running commands directly inside i t:

$ mkdir -p \
$HOME/src/baby_steps/lesson1
$ cd $HOME/src/baby_steps/lesson1

Let us create a new Ada source fi le in this

window by typing the fol lowing in the shel l :

$ nano -w hello.adb

I nside nano, type in the program in Listing 1

(wi thout the l ine numbers) , typing Ctrl+O to

save the program.

Now inside LXTerminal , create a new terminal

tab with Ctrl+Shift+T, th is wi l l automatical ly

make the new shel l 's current di rectory be the

same one we are using for this program. We can

now compi le this program with the fol lowing shel l

command:

$ gnatmake hello

The program, gnatmake, is the front end to the

22

Ada compi ler, as you wi l l see when you compi le

the program, i t cal ls other programs, including

gcc, gnatbind and gnatl ink.

You can now run the compi led program with the

fol lowing command:

$./hello

The resul t is that the program prints what is in

the double quotes in the program to the shel l , in

other words, "Hel lo, from Ada.” You have just

wri tten your fi rst Ada program!

Simple types and maths

Unl ike other languages, such as C, Ada is a

what is cal led a strongly typed language. What is

this type thing? Wel l , every value in Ada has a

type, for example, the number 1 0 is an integer

number, so i f we wanted to store values of

numbers we would define a variable of type

integer, see the sidebar for more information on

types. Exi t nano using CTRL+X and create a new

fi le cal led simple_types.adb and type in the

source from Listing 2.

Using what you learnt from the previous

example, type in and save this code, then

compi le i t wi th gnatmake and final ly, run the

program in the terminal and see what happens.

with Ada.Text_IO;
use Ada.Text_IO;

-- Print a message out to the screen.
procedure Hel lo is
begin
Put_Line ("Hel lo, from Ada.");

end Hel lo;

1
2
3
4
5
6
7
8

Listing 1 : hel lo.adb

Line 4: starts wi th 2 hyphens (or dashes) , th is is a

comment. Anything placed after the hyphens is

ignored by the compi ler up to the end of the l ine.

In Ada, a main program can be cal led almost

anything you l ike, but the fi lename must match this

name (in lower case letters) and have ".adb"

appended to the name. In our example, our main

program is cal led "Hel lo" (l ines 5 and 8) and i ts

fi lename is "hel lo.adb, " the adb means "Ada Body."

Line 5 states our program is a procedure, th is is 1

type of Ada's subprograms, the other being a

function. Both types of subprogram are used for

speci fic reasons, a procedure does not return any

values to the cal ler whereas a function does. "main"

subprograms are procedures.

Line 7 i s a cal l to a subprogram found within a

package cal led Ada.Text_IO, l ines 1 and 2. The

Put_Line procedure prints whatever is in the string

(between double quotes ") to the console.

Line 1 states that we wish to use the faci l i ties

provided by the Ada.Text_IO package, and Line 2

tel ls the compi ler we don't want to have to wri te the

subprogram cal l in fu l l , in other words, i f l ine 2 didn't

exist we would have had to type in

Ada.Text_IO.Put_Line. There are reasons to

do this, but we wi l l cover this another time.

As al l subprograms must have a beginning (l ine 6) ,

they must also have an ending, l ine 8. In Ada, al l

subprograms must state what i t is ending by

speci fying i ts name again. Ada enforces this as this

is an aid to being more readable.

Each Ada program is made up of a number of

statements, a statement ends with a semi-colon (;) .

Every statement you wri te must have a semi-colon

otherwise the program wi l l not compi le.

In Ada, there are some words which are defined by

the language, these are cal led keywords, you

cannot use these keyword names for your own

types, variables or subprograms.

23

Types enable the compi ler to make sure that only

variables of the same type can be used together,

for example, X := Y + 10; X, Y and 1 0 are al l

integers, i f X was something else, say of type

Boolean, this program would not make sense and

i t would not compi le; the compi ler would give you a

very helpful message to find your error.

Cool features: Types

with Ada.Text_IO;
use Ada.Text_IO;

procedure Simple_Types is
X : Integer := 1 0;
Y : constant Integer := 20;
Result : Integer := 0;

begin
Result := X + Y;

Put_Line ("Result = " & Integer' Image (Result)) ;
end Simple_Types;

1
2
3
4
5
6
7
8
9
1 0
1 1
1 2

Listing 2: simple_types.adb

So, we've already seen l ines 1 , 2, 4, 8 and 1 2. So

what's new? We have not seen the variable and

constant defin i tions before, these are on l ines 5, 6

and 7. Here we define 2 variables, X and Resul t

which are integer types and 1 constant, Y, which is

also an integer type.

The di fference between a variable and a constant is

that you can assign a value to a variable within the

program, see l ine 9, where we assign X + Y to

Result. I n Ada the symbol := means assign or

give the variable on the left the value of what is on

the right, in our case this is 1 0 + 20 which makes

Resul t equal 30. To make something constant we

use the keyword "constant" before the type name

(integer) .

So what happens i f you try to assign a value to Y in

the program source? Try this yoursel f and see what

happens when you compi le the program. I t wi l l not

compi le, because you cannot assign to a constant

once i t has already been assigned to.

On l ine 1 1 , there is something strange

Integer'Image. What is this? This is an

attribute of Integer. See the sidebar enti tled "Cool

features: Attributes" for more on these.

Also, on l ine 1 1 , we have another symbol , &, which

means string concatenation. This means we can

"add" strings together, the left side of & is added to

the right side of & and then Put_Line prints

everything to the screen.

Exercises

1. Change line 9 to each of the

following, compile and run, what

is the value of Result?

a) X – Y

b) Y ­ X

c) X * Y

d) X / Y

e) Y / X

2. Use this time to play around with

various numbers, variables and

constants and see what results

you get in the console.

Numeric types

Along with Integer types there are two more

types which are based on the Integer type cal led

Natural and Posi tive types; these are subtype's

of Integer in that they restrict the range of values

al lowed to be assigned to variables of these

types.

Did you manage to solve last month's chal lenge problem? H ere is the solution to compare with,

Challenge solution

#include <stdio.h>#include <stdlib.h>int newMask() {int mask = (double)rand()/RAND_MAX*254+1;return mask;}
int main(int argc, char *argv[]) {int seed = 0xA3, mask = 0;char c;FILE *inputFile = 0, *outputFile = 0;

srand(seed); /* Set the seed value. */
/* Check the number of arguments */if(argc!=3) {printf(" Usage: %s <input file> <output file>\n",argv[0]);return 1; /* Report an error */}
inputFile = fopen(argv[1],"r"); /* Open the input file. */if(!inputFile) return 2;
outputFile = fopen(argv[2],"w"); /* Open the output file. */if(!outputFile) return 3;
c = fgetc(inputFile); /* Get the first character. */
/* Loop until end-of-file is reached. */while(c != EOF) {mask = newMask(); /* Get a new mask value. */printf("mask = %d\n",mask);c ^= mask; /* Exclusive-OR with the mask. */fputc(c,outputFile); /* Write to the output file. */c = fgetc(inputFile); /* Get another character. */}
/* Close the files. */fclose(inputFile);fclose(outputFile);
return 0;}

The solution uses a new mask to encrypt each character. The numbers returned from newMask fol low a series, which

is repeatable for a given value of the input seed. Therefore, the encryption key is the random number seed.

Tutorial 4 - Bitwise operators and system commands.

AA ppllaaccee ooff bbaassiicc llooww--lleevveell pprrooggrraammmmiinngg

24

Condition

a & b

a | b

a ^ b

Meaning

a 'and' b

a 'or' b

a 'exclusive or' b

Condition

a >> n

a << n

Meaning

right shift a by n

left shift a by n

Bitwise operators

The main bitwise operators are summarised in the table below.

These operators are typical ly used with integer variable types or signal bytes stored in char variables. They act on the

binary form of the number and are typical ly used for bit packing or testing packed bits. For example, if the status of

several switches needs to be read, their input could be stored in one integer variable.

As revision of the second tutorial , the decimal values of each bit can be printed with the program below:

#include <stdio.h>int main() {int bit = 0, i = 1;while(i>0) { /* Loop until the sign bit is set */printf(" pow(2,%2d) = %11d\n",bit,i);i = i<<1; /* Shift value of i left by one. */bit++; /* Increment the counter by one. */}return 0; /* Return success to the operating system. */}
I n this example, the value stored in the variable i is shifted one place to the left. The left shift operator has the effect of

moving al l of the bits in the variable i one place to the left. I f a bit is shifted outside the memory al location of the

variable i, the bit is lost. I n this case, i only contains one. Therefore, the action of the left shift operator is to move to

the next power of two. When the bit in the variable i is moved into the sign bit the number becomes negative which

causes the while loop to stop.

The & operator is very useful for testing if bits are set. This can be combined with the left or right shift operator to test

every bit in a integer variable,

#include <stdio.h>int main() {char str[33]; /* Declare a character array to hold the output. */int bit, i = 235643; /* Declare a number to convert to binary. */for(bit=31;bit>0;bit--) { /* Loop from left to right */if(((1<<bit) & i) == 0) str[31-bit] = '0'; /* False */else str[31-bit] = '1'; /* True */}str[32]='\0'; /* Add the string terminator */printf("%d (decimal) = %s (binary)\n", i, str);return 0; /* Return success to the operating system. */}
I n this example program, each character in the char array is set according to the binary value. Then to complete the

string, the string terminator is added. Final ly, the binary form of the integer number is printed.

System commands

I t can be useful to be able to run shel l commands or other programs without directly l inking to an associated l ibrary.

This can be accomplished with the system function,

#include <stdlib.h>int main() {system("ls ./"); /* List the files in current directory. */return 0; /* Return success to the operating system. */}
25

The system function evaluates the string argument passed to it as if i t had been typed at the command line. The

standard output from the command is not captured by the program and is instead printed on the screen.

The standard output from a system command or program can be captured using a pipe. Pipes fol low the same syntax

as regular fi le functions, al lowing reading, write and bidirectional connections. For example, the contents of the current

directory can be read into a program using,

#include <stdio.h>int main() {int c;FILE *ptr = 0; /* Create a null FILE pointer */ptr = popen("ls ./", "r"); /* List the files in the directory and listen */if(!ptr) return 1; /* If the command fails return failure. */while((c=fgetc(ptr)) != EOF) { /* Read each character. */printf("%c",(char)c); /* Print the characters. */}pclose(ptr); /* Close the pipe */return 0; /* Return success to the operating system. */}
I n this case, each fi le name returned is avai lable within the program.

Any command that can be typed at the command line can be executed using system or popen. Rather than just cal l

simple shel l functions, these command can be used to plot data using gnuplot,

#include <stdlib.h>#include <stdio.h>int main(int argc, char *argv[]) {int x_min = 0, x_max = 4; /* Set the range for the plot. */char commandStr[100], systemCmd[200];if(argc < 2) {printf("Usage %s <function>\n", argv[0]); /* One argument is needed.*/return 1; /* Return error. */}/* Build the command in two steps to show what is going on. */sprintf(commandStr, "plot [x=%d:%d] %s(x)", x_min, x_max, argv[1]);
/* Run the command so that gnuplot stays open. */sprintf(systemCmd,"echo \"%s\" | gnuplot --persist",commandStr);system(systemCmd); /* Tell gnuplot to plot it. */return 0; /* Return success to the operating system. */}

Before trying this example, gnuplot should be instal led by typing:

sudo apt-get gnuplot-x11
Then once the program has been compiled try, ./gplot sin The --persist flag causes the gnuplot window to

stay open after the program has finished. M ore information on the gnuplot program is avai lable at,

http://www.gnuplot. info/

Monitoring a LINUXsystem

There are several useful functions which are avai lable under LI N U X, but are not implemented in the same way on other

operating systems. For example, the status of the memory can be retrieved using the sysinfo,

#include <stdio.h>#include <sys/sysinfo.h>int main() {struct sysinfo info; /* Create a sysinfo instance to hold the result. */sysinfo(&info); /* Get the system information */printf("Memory used = %d\n",info.totalram - info.freeram);return 0; /* Return success to the operating system. */}
26

where the sys/sysinfo.h is avai lable on LI N U X, but not OSX or M S Windows. Before the system information can

be retrieved, a struct variable of sysinfo type is created. This is not a simple variable, but contains several

variables. The member variables of the struct are accessed using the "." operator. When sysinfo is cal led, the

address of the struct variable of systinfo type is passed to the function. The function then writes the status into

the member variables of the struct.

I n the final example for this tutorial , gnuplot is used to plot the memory usage as a function of time:

#include <stdio.h>#include <stdlib.h>#include <unistd.h>#include <sys/sysinfo.h>int main() {int i, ramUsed;char gnuplotCmd[250], systemCmd[350];FILE *outPtr = 0;char fileName[50];sprintf(fileName,"data.txt"); /* The name of the output file. */struct sysinfo info; /* A sysinfo struct to hold the status. */outPtr = fopen(fileName,"w"); /* Open the output file. */if(!outPtr) return 1; /* If the output file cannot be opened return error */for(i=0;i<60;i++) {sysinfo(&info); /* Get the system information */ramUsed = info.totalram - info.freeram;fprintf(outPtr,"%d %d\n", i, ramUsed); /* Write the ram used. */usleep(500000); /* Sleep for 1/2 a second. */}fclose(outPtr); /* Close the output file. */
/* Now plot the data */sprintf(gnuplotCmd, "plot \'%s\'\n", fileName); /* Build the plot command. */
/* Create the full command, including the pipe to gnuplot */sprintf(systemCmd,"echo \"%s\" | gnuplot --persist",gnuplotCmd);
system(systemCmd); /* Execute the system command. */return 0; /* Return success to the system. */}

where the sys/sysinfo.h header fi le is avai lable on LI N U X and the unistd.h header fi le is avai lable on LI N U X or

OSX. The program writes the memory usage to an output fi le every half a second. Then gnuplot is run to plot the

memory usage as a function of time.

Challenge problem

M odify the previous example program to write an output fi le using the return value of the command hostname to form a

fi le name. Then plot the memory used and the system load while running one or more other programs. The loads[3]
member variable of the sysinfo struct holds the, one, five and fifteen minute load averages. Try using,

fprintf(outPtr,"%d %f %d\n", i, ramUsed/10240.0, info.loads[0]);
to write the data fi le. Then plot the data using two strings,

sprintf(gnuplotCmdOne, "plot \'%s\' using 1:2 title \'%s\'", fileName, "Ram used");
sprintf(gnuplotCmdTwo, ", \'%s\' using 1:3 title \'%s\'\n", fileName, "Load");
/* Create the full command, including the pipe to gnuplot */
sprintf(systemCmd,"echo \"%s%s\" | gnuplot -persist",gnuplotCmdOne,gnuplotCmdTwo);

The solution to the problem wil l be given next time.

Article byW. H. Bell

27

As usual , i f you get stuck you can

download the project from:

http: //scratch.mit.edu/forums/

My user name is "racypy".

The Bubble Sort Algorithm

This month, I thought we'd do something

a l ittle different: an algorithm.

Algorithms are step-by-step instructions

for doing a certain task. I f you learned

the "grid method" for multiplying

numbers at school , then you are using

an algorithm. If you fol low the steps

correctly, you wi l l get the right answer.

When we write a computer program,

we want an algorithm that is as fast as

possible and that uses as l ittle

memory as possible. I t a lso needs to

produce the correct result, of course!

The Bubble Sort is an algorithm

for sorting l ists of numbers.

I t's actual ly not one of the most

efficient sorting methods: it can

be quite slow on a real ly jumbled

l ist.

However it is very fast at sorting

l ists that are almost in the right

order.

Here's the start of our program. It

simply announces what the

program is and then cal ls two

processes - "Make_Array" and

"Bubble_Sort" .

Fact:

Algorithms get their name

from a Persian mathematician:

Al-Khwārizmī (c.780 – c. 850).

28

Scratch

On!

Make_Array

This part of the program is the "Make_Array"

procedure. First we use a loop to make a l ist

(cal led "ordered") holding the numbers 1 - 15.

Then we makes random choices from this l ist,

adding them to the new l ist "Array". We delete

the ones that have been used, so that we only

get each number once.

Bubble_Sort

Here we loop over the array

for the same number of

times as there are numbers

in the l ist.

Nested within this loop is

another in which we loop

over the l ist, checking to see

if any number is greater than

the one next to it.

I f i t is greater, then the

numbers get swapped over.

As it's running, you can see

the numbers getting

swapped unti l the l ist is ful ly

sorted.

I f you enjoyed this, you

might want to adapt the

program so that it sorts

numbers that the user

provides, instead of this

randomised l ist.

29

When programming, it is sometimes

useful to be able to read and write to and

from external text files. The first example

shows you how to use python to create a

html web page.

The second program displays fading

titles pulling data from an external text

file.

HTML Writer

By Jaseman ­ 16th September 2012

import os

Creates a file and opens it for writing (w)

f = open('/home/pi/test.html', 'w')

Write lines of code into the file

Note: avoid using " quotations, use instead '

f.write("<html>"+"\n")

f.write("<head>"+"\n")

f.write("<title>A Webpage Created by Python</title>"+"\n")

f.write("</head>"+"\n")

f.write("<body bgcolor='#ffffdd'>"+"\n")

f.write(""+"\n")

f.write("<center>"+"\n")

f.write("<h1>THE HEADING</h1><p>"+"\n")

f.write("<hr>"+"\n")

f.write("</center>"+"\n")

f.write("<h3>A Subheading</h3><p>"+"\n")

f.write("This is the text of the first paragraph.<p>"+"\n")

f.write("<hr>"+"\n")

f.write("<center>"+"\n")

f.write(""+"\n")

f.write("EMAIL<p>"+"\n")

f.write("WEBSITE<p>"+"\n")

f.write("</body>"+"\n")

f.write("</html>")

Close the file

f.close()

Open the html file with Midori browser

os.system("midori /home/pi/test.html")

PYTHON VERSION: 2.7.3rc2

PYGAME VERSION: 1 .9.2a0

O.S.: Debian 7

This program was written for Raspbian Wheezy, but could be adapted for Windows PC's by

changing the fi le name path and the browser name in the os.system call .

30

Import Settings

By Jaseman ­ 22nd September 2012

f = open('settings.txt', 'r') # Opens a text file to read settings from (r)

settings = [] # Create a variable array to hold the settings

for line in f: # Loop to get each line of the file into the array

settings.append(line)

f.close() # Close the file

This part splits each line at the colon (:) and defines variables

screenx=settings[0].split(':'); screeny=settings[1].split(':')
windowcaption=settings[2].split(':'); textsize=settings[3].split(':')
title1=settings[4].split(':'); title2=settings[5].split(':')
title3=settings[6].split(':')

import os,pygame; from pygame.locals import *; pygame.init()

os.environ['SDL_VIDEO_WINDOW_POS'] = 'center'

pygame.display.set_caption(windowcaption[1].strip())

screen=pygame.display.set_mode([int(screenx[1]),int(screeny[1])],0,32)

fadesurf=pygame.Surface((int(screenx[1]),int(screeny[1])))

titlesurf=pygame.Surface((int(screenx[1]),int(screeny[1])))

nexttitle=1;run=1

while run==1:

Print the next title

font = pygame.font.Font(None,int(textsize[1]))

if nexttitle==1:

text = font.render(title1[1].strip(),True,(255,255,255))

if nexttitle==2:

text = font.render(title2[1].strip(),True,(255,255,255))

if nexttitle==3:

text = font.render(title3[1].strip(),True,(255,255,255))

tgr=text.get_rect

tp=tgr(centerx=screen.get_width()/2,centery=screen.get_height()/2)

titlesurf.blit(text,tp)

Increase the transparency of fadesurf

for t in range(255,0,­20):

fadesurf.set_alpha(t); screen.blit(titlesurf,(0,0))

screen.blit(fadesurf,(0,0)); pygame.display.update()

Decrease the transparency of fadesurf

for t in range(0,256,20):

fadesurf.set_alpha(t); screen.blit(titlesurf,(0,0))

screen.blit(fadesurf,(0,0)); pygame.display.update()

titlesurf.fill((0,0,0)); screen.blit(fadesurf,(0,0))

pygame.display.update()

nexttitle+=1

if nexttitle>=4: nexttitle=1

First open Leafpad. Type in the text shown to

the right and save the fi le as 'settings.txt' in

the same location where your python code wil l

be saved.

screen width:1024

screen height:600

window caption:Fading Titles

text size:100

title 1:Jaseman Presents...

title 2:A Python Pit Production

title 3:FADING TITLE DEMO

Try changing the values in the 'settings.txt' fi le and then run the python

program again. By this method you can change how the program runs

without having to alter the python code itself.

31

The MagPi is a trademark of The MagPi Ltd. Raspberry Pi is a trademark of the Raspberry Pi Foundation. The MagPi magazine is

collaboratively produced by an independent group of Raspberry Pi owners, and is not affiliated in any way with the Raspberry Pi

Foundation. It is prohibited to commercially produce this magazine without authorization from The MagPi Ltd. Printing for non

commercial purposes is agreeable under the Creative Commons license below. The MagPi does not accept ownership or

responsibility for the content or opinions expressed in any of the articles included in this issue. All articles are checked and tested

before the release deadline is met but some faults may remain. The reader is responsible for all consequences, both to software and

hardware, following the implementation of any of the advice or code printed. The MagPi does not claim to own any copyright licenses

and all content of the articles are submitted with the responsibility lying with that of the article writer.

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of

this license, visit:

http://creativecommons.org/licenses/by-nc-sa/3.0/

Alternatively, send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041 , USA.

Feedback

editor@themagpi.com

I'm Faizal from Malaysia. Just
ordered a Raspberry Pi and
waiting to reach me. Saw this link
today for your mag. Great effort
but if can have more images
(more pictures) view would be
great.

Faizal

Your magazine is great. I'm using
it to teach python to my kids. One
possible suggestion, would it be
possible to produce a .mobi or
.epub version, as this would save
paper, and i could just put all the
magaines on the Kindle for them
to read and copy from?

Adam

I am a Pi owner and just today
found out about the magazine. I
am planning on starting at issue 1
however I would have found it
sooner had it been on Zinio
(http://za.zinio.com/) I use this
Android app to read all my
magazines. So if you can publish
it there, it would be awesome, and
I can get the updates the moment
the next one comes out.

Q

Still a great mag. Just one
question have you stopped the
skutter articles as this is the
second month with nothing
regarding the skutter? I hope you
have not as I was looking forward
to the articles.

Andy

While I enjoy reading the MagPi,
I’d like to read it on my Kindle, if
you already offer that as an
electronic download. The two
column layout is a pain to read on
the Kindle. Would you consider
one of the following options:
1. Master the MagPi for one
column half­size­pages PDF
2. Create an edition for the
Amazon Kindle shop

Kirill

If only a magazine had existed in
the early days of the Sinclair ZX80
my life would have been so much
easier. My Raspberry Pi is due to
be delivered by Santa but I have
your excellent magazine to keep
me informed and interested till
then. Many thanks for an excellent
and innovative magazine.

Ron

Just a thanks and to let you know,
I'd pay for this.

Newell

32

