

Consejeria de Educación Dirección General de Formación Profesional y Régimen Especial

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR Convocatoria de 12 de junio (ORDEN EDU/254/2024, de 19 de marzo, B.O.C. y L. 2 de abril) PARTE ESPECÍFICA. OPCIÓN: OP3

DATOS DEL ASPIRANTE	CALIFICACIÓN
APELLIDOS:	
NOMBRE:	
DNI:	
CENTRO EDUCATIVO:	

EJERCICIO DE QUÍMICA

DATOS:

Masas atómicas (en u) H: 1; C: 12; O: 16; Al: 27; S: 32. Número de Avogadro N_A=6,022·10²³ partículas·mol⁻¹ Constante de los gases ideales R=0,082 atm·L·K⁻¹·mol⁻¹. 1 atm= 760 mm Hg

- 1.- Contestar a las siguientes preguntas:
 - a) Defina los conceptos de número atómico, número másico e isótopos.
 - b) ¿En qué se transforma un átomo neutro si pierde 2 electrones? ¿Y si adquiere un protón en el núcleo? ¿Y si el número de neutrones de ese átomo aumenta en una unidad?
 - c) Para el nitrógeno tenemos 2 isótopos. El primero, de masa 14,0031 u y abundancia 99,64 y un segundo isótopo de masa 15,0001 u. Determina la masa atómica relativa del Nitrógeno.
- 2.- El metano, de fórmula CH₄, es un gas en condiciones habituales de P y T. Tenemos una muestra de dicho gas en un recipiente de 300 ml, a una presión de 780 mmHg y 300 K de temperatura. Determinar:
 - a) Moles de metano y masa de metano que hay en el recipiente.
 - b) Moléculas de metano y átomos de Hidrógeno en la muestra.
 - c) Peso de una molécula de metano expresado en gramos.
- 3.- Tenemos un recipiente con una disolución de 50 ml de ácido sulfúrico, H₂SO₄, en agua, del 15 % de riqueza en masa y de 1,1 g/ml de densidad.
 - a) Determinar la masa de disolución y la masa de ácido puro que contiene.
 - b) Determinar los moles de ácido sulfúrico.
 - c) Determina la concentración del ácido en mol/l.

Consejeria de Educación Dirección General de Formación Profesional y Régimen Especial

DATOS	S DEL /	ASPIF	RANTE
-------	---------	-------	-------

APELLIDOS: NOMBRE:

DNI:

CENTRO EDUCATIVO:

EJERCICIO DE QUÍMICA (Continuación)

4.- Calcula la entalpía de la siguiente reacción a partir de las entalpías estándar de ls sustancias que intervienen:

$$Ca(OH)_2$$
 (s) + CO_2 (g) \rightarrow $CaCO_3$ (s) + H_2O (l)

Datos: ΔH_F^0 Ca(OH)₂ (s) = -985,7 KJ/mol ΔH_F^0 CO₂ (g) = -393,5 KJ/mol ΔH_F^0 CaCO₃ (s) = -1206,7 KJ/mol ΔH_F^0 H₂O (l) = -285,8 KJ/mol

- 5.- Cuando el ácido clorhídrico ataca al aluminio el proceso que ocurre viene descrito por la ecuación química: Al (s) + 3 HCl (aq) \rightarrow AlCl₃ (aq) + 3/2 H₂ (g) (ajustada). Mezclamos 15 gramos de aluminio con una disolución de HCl en exceso. Determinar la masa de AlCl₃ que se obtendría si el rendimiento de la reacción fuese del 65%.
- 6.- Nombre o formule, según corresponda, las siguientes sustancias:
 - 1. CCI₄
 - 2. KNO₃
 - 3. ZnCO₃
 - 4. CH≡C-CH₃
 - 5. CH₃-CHOH-CH₂-CH₃
 - 6. Dihidróxido de calcio.
 - 7. Amoníaco.
 - 8. Sulfato de potasio (o tetraoxidosulfato de dipotasio)
 - 9. Etanamida.
 - 10. Ácido propanoico.

Consejería de Educación Dirección General de Formación Profesional y Régimen Especial

	А٦		C	n		۸	2	DI	D	Λ	N	IT	-
u	ΑІ	u	3	u	_ 1	Α.	3	~1	К	А	. 17		

APELLIDOS: NOMBRE:

DNI:

CENTRO EDUCATIVO:

CRITERIOS DE EVALUACIÓN Y CALIFICACIÓN

CALIFICACIÓN

EJERCICIO 1: 2 puntos, los tres apartados calificados con la misma puntuación.

EJERCICIO 2: 2 puntos; los tres apartados calificados con la misma puntuación.

EJERCICIO 3: 2 puntos; los tres apartados calificados con la misma puntuación.

EJERCICIO 4: 1 punto.

EJERCICIO 5: 1 punto.

EJERCICIO 6: 2 puntos; 0,2 puntos cada apartado.